These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 7785519)
1. [Functional magnetic resonance imaging of the human primary visual cortex during visual stimulation]. Miki A; Nakajima T; Fujita M; Watanabe H; Kuwabara T; Naruse S; Takagi M; Abe H Nippon Ganka Gakkai Zasshi; 1995 May; 99(5):612-7. PubMed ID: 7785519 [TBL] [Abstract][Full Text] [Related]
2. Functional magnetic resonance imaging of the primary visual cortex: evaluation of human afferent visual system. Miki A; Nakajima T; Fujita M; Wantanabe H; Kuwabara T; Naruse S; Takagi M; Abe H Jpn J Ophthalmol; 1995; 39(3):302-8. PubMed ID: 8577083 [TBL] [Abstract][Full Text] [Related]
3. Cortical activation in hemianopia after stroke. Nelles G; de Greiff A; Pscherer A; Forsting M; Gerhard H; Esser J; Diener HC Neurosci Lett; 2007 Oct; 426(1):34-8. PubMed ID: 17881128 [TBL] [Abstract][Full Text] [Related]
4. Functional MRI signal changes in primary visual cortex corresponding to the central normal visual field of patients with primary open-angle glaucoma. Qing G; Zhang S; Wang B; Wang N Invest Ophthalmol Vis Sci; 2010 Sep; 51(9):4627-34. PubMed ID: 20357191 [TBL] [Abstract][Full Text] [Related]
5. Functional magnetic resonance imaging in homonymous hemianopsia. Miki A; Nakajima T; Fujita M; Takagi M; Abe H Am J Ophthalmol; 1996 Mar; 121(3):258-66. PubMed ID: 8597268 [TBL] [Abstract][Full Text] [Related]
6. Objective perimetry using functional magnetic resonance imaging in patients with visual field loss. Furuta A; Nakadomari S; Misaki M; Miyauchi S; Iida T Exp Neurol; 2009 Jun; 217(2):401-6. PubMed ID: 19348794 [TBL] [Abstract][Full Text] [Related]
7. Functional evaluation using magnetic resonance imaging of the visual cortex in patients with retrochiasmatic lesions. Kollias SS; Landau K; Khan N; Golay X; Bernays R; Yonekawa Y; Valavanis A J Neurosurg; 1998 Nov; 89(5):780-90. PubMed ID: 9817416 [TBL] [Abstract][Full Text] [Related]
8. Decreased lateral geniculate nucleus activation in retrogeniculate hemianopia demonstrated by functional magnetic resonance imaging at 4 Tesla. Miki A; Liu GT; Modestino EJ; Bonhomme GR; Liu CS; Haselgrove JC Ophthalmologica; 2005; 219(1):11-5. PubMed ID: 15627821 [TBL] [Abstract][Full Text] [Related]
9. Reorganisation of the visual cortex in callosal agenesis and colpocephaly. Bittar RG; Ptito A; Dumoulin SO; Andermann F; Reutens DC J Clin Neurosci; 2000 Jan; 7(1):13-5. PubMed ID: 10847643 [TBL] [Abstract][Full Text] [Related]
10. Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field. Schwartz S; Vuilleumier P; Hutton C; Maravita A; Dolan RJ; Driver J Cereb Cortex; 2005 Jun; 15(6):770-86. PubMed ID: 15459076 [TBL] [Abstract][Full Text] [Related]
11. An FMRI investigation of the cortical network underlying detection and categorization abilities in hemianopic patients. Perez C; Peyrin C; Cavézian C; Coubard O; Caetta F; Raz N; Levin N; Doucet G; Andersson F; Obadia M; Gout O; Héran F; Savatovsky J; Chokron S Brain Topogr; 2013 Apr; 26(2):264-77. PubMed ID: 22878845 [TBL] [Abstract][Full Text] [Related]
12. Resolution of homonymous visual field loss documented with functional magnetic resonance and diffusion tensor imaging. Yoshida M; Ida M; Nguyen TH; Iba-Zizen MT; Bellinger L; Stievenart JL; Nagao T; Kikuchi S; Hara T; Shiba T; Kitahara K; Cabanis EA J Neuroophthalmol; 2006 Mar; 26(1):11-7. PubMed ID: 16518160 [TBL] [Abstract][Full Text] [Related]
14. Abnormal visual field maps in human cortex: a mini-review and a case report. Haak KV; Langers DR; Renken R; van Dijk P; Borgstein J; Cornelissen FW Cortex; 2014 Jul; 56():14-25. PubMed ID: 23347557 [TBL] [Abstract][Full Text] [Related]
15. Retinal eccentricity effects on reaction time to imagined stimuli. Marzi CA; Mancini F; Metitieri T; Savazzi S Neuropsychologia; 2006; 44(8):1489-95. PubMed ID: 16360710 [TBL] [Abstract][Full Text] [Related]
16. Timing of interactions across the visual field in the human cortex. Vanni S; Dojat M; Warnking J; Delon-Martin C; Segebarth C; Bullier J Neuroimage; 2004 Mar; 21(3):818-28. PubMed ID: 15006648 [TBL] [Abstract][Full Text] [Related]
17. Visual training in hemianopia alters neural activity in the absence of behavioural improvement: a pilot study. Larcombe SJ; Kulyomina Y; Antonova N; Ajina S; Stagg CJ; Clatworthy PL; Bridge H Ophthalmic Physiol Opt; 2018 Sep; 38(5):538-549. PubMed ID: 30357899 [TBL] [Abstract][Full Text] [Related]
18. Quantitative study of changes in oxidative metabolism during visual stimulation using absolute relaxation rates. Fujita N; Matsumoto K; Tanaka H; Watanabe Y; Murase K NMR Biomed; 2006 Feb; 19(1):60-8. PubMed ID: 16292741 [TBL] [Abstract][Full Text] [Related]
19. Spatially specific FMRI repetition effects in human visual cortex. Murray SO; Olman CA; Kersten D J Neurophysiol; 2006 Apr; 95(4):2439-45. PubMed ID: 16394067 [TBL] [Abstract][Full Text] [Related]
20. Discordance between subjective perimetric visual fields and objective multifocal visual evoked potential-determined visual fields in patients with hemianopsia. Watanabe K; Shinoda K; Kimura I; Mashima Y; Oguchi Y; Ohde H Am J Ophthalmol; 2007 Feb; 143(2):295-304. PubMed ID: 17184719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]