BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 7785779)

  • 1. Correlation of electrophoretic mobilities of proteins and peptides with their physicochemical properties.
    Basak SK; Ladisch MR
    Anal Biochem; 1995 Mar; 226(1):51-8. PubMed ID: 7785779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliable electrophoretic mobilities free from Joule heating effects using CE.
    Evenhuis CJ; Hruska V; Guijt RM; Macka M; Gas B; Marriott PJ; Haddad PR
    Electrophoresis; 2007 Oct; 28(20):3759-66. PubMed ID: 17941134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do DNA gel electrophoretic mobilities extrapolate to the free-solution mobility of DNA at zero gel concentration?
    Strutz K; Stellwagen NC
    Electrophoresis; 1998 May; 19(5):635-42. PubMed ID: 9629889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicochemical characterization of phosphinic pseudopeptides by capillary zone electrophoresis in highly acidic background electrolytes.
    Koval D; Kasicka V; Jirácek J; Collinsová M
    Electrophoresis; 2003 Mar; 24(5):774-81. PubMed ID: 12627437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation of electrophoretic mobilities from capillary electrophoresis with physicochemical properties of proteins and peptides.
    Rickard EC; Strohl MM; Nielsen RG
    Anal Biochem; 1991 Aug; 197(1):197-207. PubMed ID: 1952066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of monascus pigment derivatives on the electrophoretic mobility of bacteria, and the cell adsorption and antibacterial activities of pigments.
    Kim C; Jung H; Kim JH; Shin CS
    Colloids Surf B Biointerfaces; 2006 Feb; 47(2):153-9. PubMed ID: 16423514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of electrophoretic mobilities. 3. Effect of ionic strength in capillary zone electrophoresis.
    Li D; Fu S; Lucy CA
    Anal Chem; 1999 Feb; 71(3):687-99. PubMed ID: 21662723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of ionic strength on the electrophoretic mobility and protonation constants of an EPS-producing bacterial strain.
    Tourney J; Ngwenya BT
    J Colloid Interface Sci; 2010 Aug; 348(2):348-54. PubMed ID: 20546767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of cation binding to the adenosine nucleotides using the variable ionic strength method: validation of the Debye-Hückel-Onsager theory of electrophoresis in the absence of counterion binding.
    Stellwagen E; Stellwagen NC
    Electrophoresis; 2007 Apr; 28(7):1053-62. PubMed ID: 17295422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the effect of ionic strength of Tris-acetate background electrolyte on electrophoretic mobilities of mono-, di-, and trivalent organic anions by capillary electrophoresis.
    Koval D; Kasicka V; Zusková I
    Electrophoresis; 2005 Sep; 26(17):3221-31. PubMed ID: 16097028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of methanol as a buffer additive on the mobilities of organic cations in capillary electrophoresis.
    Roy KI; Lucy CA
    Electrophoresis; 2003 Jan; 24(3):370-9. PubMed ID: 12569529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the electrophoresis of peptides and proteins: improvements in the "bead method" to include ion relaxation and "finite size effects".
    Xin Y; Hess R; Ho N; Allison S
    J Phys Chem B; 2006 Dec; 110(49):25033-44. PubMed ID: 17149927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectric friction as a mechanism for selectivity alteration in capillary electrophoresis using acetonitrile-water media.
    Roy KI; Lucy CA
    Electrophoresis; 2002 Feb; 23(3):383-92. PubMed ID: 11870737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of dodecyl sulfate ions on the electrophoretic mobilities of lipoprotein particles measured by HPCE.
    Cruzado ID; Hu AZ; Macfarlane RD
    J Capillary Electrophor; 1996; 3(1):25-9. PubMed ID: 9384761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoretic mobility of five polypeptides using nine different capillary chemistries over the pH range of 3.5-6.5.
    Treat-Clemons LG; Corcoran RB
    J Capillary Electrophor; 1997; 4(3):123-30. PubMed ID: 9484659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge-reduced nano electrospray ionization combined with differential mobility analysis of peptides, proteins, glycoproteins, noncovalent protein complexes and viruses.
    Bacher G; Szymanski WW; Kaufman SL; Zöllner P; Blaas D; Allmaier G
    J Mass Spectrom; 2001 Sep; 36(9):1038-52. PubMed ID: 11599082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-consistent framework for standardising mobilities in free solution capillary electrophoresis: applications to oligoglycines and oligoalanines.
    Survay MA; Goodall DM; Wren SA; Rowe RC
    J Chromatogr A; 1996 Aug; 741(1):99-113. PubMed ID: 8785001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation and investigation of structure-mobility relationship of gonadotropin-releasing hormones by capillary zone electrophoresis in conventional and isoelectric acidic background electrolytes.
    Solínová V; Kasicka V; Sázelová P; Barth T; Miksík I
    J Chromatogr A; 2007 Jul; 1155(2):146-53. PubMed ID: 17229433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophoresis of proteins in semidilute polyethylene glycol solutions: mechanism of retardation.
    Radko SP; Chrambach A
    Biopolymers; 1997 Aug; 42(2):183-9. PubMed ID: 9234997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophoretic mobilities and migrating analytes: Part 1: Relationships.
    Cross RF; Wong MG
    J Capill Electrophor Microchip Technol; 2002; 7(5-6):119-24. PubMed ID: 12546161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.