BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 7785837)

  • 1. Random mutagenesis of the substrate-binding site of a serine protease. A new library of alpha-lytic protease S1 mutants.
    Graham LD; Haggett KD; Hayes PJ; Schober PA; Jennings PA; Whittaker RG
    Ann N Y Acad Sci; 1995 Mar; 750():10-4. PubMed ID: 7785837
    [No Abstract]   [Full Text] [Related]  

  • 2. Functional linkage between the active site of alpha-lytic protease and distant regions of structure: scanning alanine mutagenesis of a surface loop affects activity and substrate specificity.
    Mace JE; Wilk BJ; Agard DA
    J Mol Biol; 1995 Aug; 251(1):116-34. PubMed ID: 7643381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new library of alpha-lytic protease S1 mutants generated by combinatorial random substitution.
    Graham LD; Haggett KD; Hayes PJ; Schober PA; Jennings PA; Whittaker RG
    Biochem Mol Biol Int; 1994 Apr; 32(5):831-9. PubMed ID: 8069232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and structural characterization of mutations of glycine 216 in alpha-lytic protease: a new target for engineering substrate specificity.
    Mace JE; Agard DA
    J Mol Biol; 1995 Dec; 254(4):720-36. PubMed ID: 7500345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random mutagenesis of the substrate-binding site of a serine protease can generate enzymes with increased activities and altered primary specificities.
    Graham LD; Haggett KD; Jennings PA; Le Brocque DS; Whittaker RG; Schober PA
    Biochemistry; 1993 Jun; 32(24):6250-8. PubMed ID: 8512935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein engineering of the high-alkaline serine protease PB92 from Bacillus alcalophilus: functional and structural consequences of mutation at the S4 substrate binding pocket.
    Teplyakov AV; van der Laan JM; Lammers AA; Kelders H; Kalk KH; Misset O; Mulleners LJ; Dijkstra BW
    Protein Eng; 1992 Jul; 5(5):413-20. PubMed ID: 1518789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis of substrate specificity in the serine proteases.
    Perona JJ; Craik CS
    Protein Sci; 1995 Mar; 4(3):337-60. PubMed ID: 7795518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for the broad substrate specificity of fiddler crab collagenolytic serine protease 1.
    Tsu CA; Perona JJ; Fletterick RJ; Craik CS
    Biochemistry; 1997 May; 36(18):5393-401. PubMed ID: 9154921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering proteases with altered specificity.
    Leis JP; Cameron CE
    Curr Opin Biotechnol; 1994 Aug; 5(4):403-8. PubMed ID: 7765173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolating substrates for an engineered alpha-lytic protease by phage display.
    Lien S; Francis GL; Graham LD; Wallace JC
    J Protein Chem; 2003 Feb; 22(2):155-66. PubMed ID: 12760420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of enzyme specificity by site-directed mutagenesis.
    Hedstrom L; Graf L; Stewart CB; Rutter WJ; Phillips MA
    Methods Enzymol; 1991; 202():671-87. PubMed ID: 1784193
    [No Abstract]   [Full Text] [Related]  

  • 12. Computational method for the design of enzymes with altered substrate specificity.
    Wilson C; Mace JE; Agard DA
    J Mol Biol; 1991 Jul; 220(2):495-506. PubMed ID: 1856870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serine protease mechanism and specificity.
    Hedstrom L
    Chem Rev; 2002 Dec; 102(12):4501-24. PubMed ID: 12475199
    [No Abstract]   [Full Text] [Related]  

  • 14. Redesigning the substrate specificity of the hepatitis C virus NS3 protease.
    Failla CM; Pizzi E; De Francesco R; Tramontano A
    Fold Des; 1996; 1(1):35-42. PubMed ID: 9079362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redesign of catalytic center of an enzyme: aspartic to serine proteinase.
    Tanaka T; Yada RY
    Biochem Biophys Res Commun; 2004 Oct; 323(3):947-53. PubMed ID: 15381092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pro region C-terminus:protease active site interactions are critical in catalyzing the folding of alpha-lytic protease.
    Peters RJ; Shiau AK; Sohl JL; Anderson DE; Tang G; Silen JL; Agard DA
    Biochemistry; 1998 Sep; 37(35):12058-67. PubMed ID: 9724517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of amino acid side-chains to S1 cavities of serine proteinases.
    Lu W; Apostol I; Qasim MA; Warne N; Wynn R; Zhang WL; Anderson S; Chiang YW; Ogin E; Rothberg I; Ryan K; Laskowski M
    J Mol Biol; 1997 Feb; 266(2):441-61. PubMed ID: 9047374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular model of the specificity pocket of the hepatitis C virus protease: implications for substrate recognition.
    Pizzi E; Tramontano A; Tomei L; La Monica N; Failla C; Sardana M; Wood T; De Francesco R
    Proc Natl Acad Sci U S A; 1994 Feb; 91(3):888-92. PubMed ID: 8302861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel substrate-binding pocket interaction restricts the specificity of the human NK cell-specific serine protease, Met-ase-1.
    Smyth MJ; O'Connor MD; Trapani JA; Kershaw MH; Brinkworth RI
    J Immunol; 1996 Jun; 156(11):4174-81. PubMed ID: 8666785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A protease having a lectin-like domain: structure and function of rarobacter protease I, a yeast-lytic enzyme].
    Shimoi H
    Tanpakushitsu Kakusan Koso; 1993 Mar; 38(4):773-8. PubMed ID: 8475332
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.