These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 7785837)

  • 21. Selection of Streptomyces griseus protease B mutants with desired alterations in primary specificity using a library screening strategy.
    Sidhu SS; Borgford TJ
    J Mol Biol; 1996 Mar; 257(2):233-45. PubMed ID: 8609620
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification and characterization of S1 mutants of alpha-lytic protease having altered catalytic properties.
    Haggett KD; Graham LD; Milner SJ; Whittaker RG
    Arch Biochem Biophys; 1994 Oct; 314(1):132-41. PubMed ID: 7944385
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insights into matriptase-2 substrate binding and inhibition mechanisms by analyzing active-site-mutated variants.
    Maurer E; Sisay MT; Stirnberg M; Steinmetzer T; Bajorath J; Gütschow M
    ChemMedChem; 2012 Jan; 7(1):68-72. PubMed ID: 21919209
    [No Abstract]   [Full Text] [Related]  

  • 24. Engineering of S2 site of aqualysin I; alteration of P2 specificity by excluding P2 side chain.
    Tanaka T; Matsuzawa H; Ohta T
    Biochemistry; 1998 Dec; 37(50):17402-7. PubMed ID: 9860855
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The oligomeric structure of human granzyme A is a determinant of its extended substrate specificity.
    Bell JK; Goetz DH; Mahrus S; Harris JL; Fletterick RJ; Craik CS
    Nat Struct Biol; 2003 Jul; 10(7):527-34. PubMed ID: 12819769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzymatic activity of the Staphylococcus aureus SplB serine protease is induced by substrates containing the sequence Trp-Glu-Leu-Gln.
    Dubin G; Stec-Niemczyk J; Kisielewska M; Pustelny K; Popowicz GM; Bista M; Kantyka T; Boulware KT; Stennicke HR; Czarna A; Phopaisarn M; Daugherty PS; Thøgersen IB; Enghild JJ; Thornberry N; Dubin A; Potempa J
    J Mol Biol; 2008 May; 379(2):343-56. PubMed ID: 18448121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conserved mode of peptidomimetic inhibition and substrate recognition of human cytomegalovirus protease.
    Tong L; Qian C; Massariol MJ; Déziel R; Yoakim C; Lagacé L
    Nat Struct Biol; 1998 Sep; 5(9):819-26. PubMed ID: 9731777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stereo- and sequence specificity of serine proteases in peptide synthesis.
    Kasche V; Michaelis G; Wiesemann T
    Biomed Biochim Acta; 1991; 50(10-11):S38-43. PubMed ID: 1820058
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural and biochemical analysis of human pathogenic astrovirus serine protease at 2.0 A resolution.
    Speroni S; Rohayem J; Nenci S; Bonivento D; Robel I; Barthel J; Luzhkov VB; Coutard B; Canard B; Mattevi A
    J Mol Biol; 2009 Apr; 387(5):1137-52. PubMed ID: 19249313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies on the structure and function of subtilisin E by protein engineering.
    Takagi H; Matsuzawa H; Ohta T; Yamasaki M; Inouye M
    Adv Exp Med Biol; 1996; 379():269-75. PubMed ID: 8796331
    [No Abstract]   [Full Text] [Related]  

  • 31. Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold.
    Perona JJ; Craik CS
    J Biol Chem; 1997 Nov; 272(48):29987-90. PubMed ID: 9374470
    [No Abstract]   [Full Text] [Related]  

  • 32. Display of active subtilisin 309 on phage: analysis of parameters influencing the selection of subtilisin variants with changed substrate specificity from libraries using phosphonylating inhibitors.
    Legendre D; Laraki N; Gräslund T; Bjørnvad ME; Bouchet M; Nygren PA; Borchert TV; Fastrez J
    J Mol Biol; 2000 Feb; 296(1):87-102. PubMed ID: 10656819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Substrate specificity of a novel serine protease from soybean [Glycine max (L.) Merrill].
    Morita S; Fukase M; Yamaguchi M; Morita Y
    J Biochem; 1996 Jun; 119(6):1094-9. PubMed ID: 8827443
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Substrate specificity of alkaline proteases from Cephalosporium sp. KM388.
    Tsuchiya K; Seki K; Arai T; Masui T
    Biosci Biotechnol Biochem; 1993 Oct; 57(10):1803-4. PubMed ID: 7764278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. pH dependence of the catalytic activity of a subtilisin-like proteinase.
    Lange G; Betzel C; Wilson K; Branner S
    Adv Exp Med Biol; 1996; 379():229-33. PubMed ID: 8796327
    [No Abstract]   [Full Text] [Related]  

  • 36. Prime site binding inhibitors of a serine protease: NS3/4A of hepatitis C virus.
    Ingallinella P; Fattori D; Altamura S; Steinkühler C; Koch U; Cicero D; Bazzo R; Cortese R; Bianchi E; Pessi A
    Biochemistry; 2002 Apr; 41(17):5483-92. PubMed ID: 11969409
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Induced structure of a helical switch as a mechanism to regulate enzymatic activity.
    Nomura AM; Marnett AB; Shimba N; Dötsch V; Craik CS
    Nat Struct Mol Biol; 2005 Nov; 12(11):1019-20. PubMed ID: 16244665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intricate structural coordination and domain plasticity regulate activity of serine protease HtrA2.
    Chaganti LK; Kuppili RR; Bose K
    FASEB J; 2013 Aug; 27(8):3054-66. PubMed ID: 23608143
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probing the S1/S1' substrate binding pocket geometry of HIV-1 protease with modified aspartic acid analogues.
    Short GF; Laikhter AL; Lodder M; Shayo Y; Arslan T; Hecht SM
    Biochemistry; 2000 Aug; 39(30):8768-81. PubMed ID: 10913288
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Free energy calculations on binding and catalysis by alpha-lytic protease: the role of substrate size in the P1 pocket.
    Caldwell JW; Agard DA; Kollman PA
    Proteins; 1991; 10(2):140-8. PubMed ID: 1896427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.