BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 7785864)

  • 1. Design of novel biocatalysts by "bioimprinting" during unfolding-refolding of fully dispersed covalently immobilized enzymes.
    Soler G; Blanco RM; Fernández-Lafuente R; Rosell CM; Guisán JM
    Ann N Y Acad Sci; 1995 Mar; 750():349-56. PubMed ID: 7785864
    [No Abstract]   [Full Text] [Related]  

  • 2. Reactivation strategies by unfolding/refolding of chymotrypsin derivatives after inactivation by organic solvents.
    Soler G; Bastida A; Blanco RM; Fernández-Lafuente R; Guisán JM
    Biochim Biophys Acta; 1997 Apr; 1339(1):167-75. PubMed ID: 9165111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivation of immobilized enzymes.
    Mozhaev VV; Berezin IV; Martinek K
    Methods Enzymol; 1987; 135():586-96. PubMed ID: 3600311
    [No Abstract]   [Full Text] [Related]  

  • 4. Deactivation of alpha-chymotrypsin and alpha-chymotrypsin-CNBr-Sepharose 4B conjugates in aliphatic alcohols.
    Clark DS; Bailey JE
    Biochim Biophys Acta; 1984 Jul; 788(2):181-8. PubMed ID: 6743665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of mass-transfer limitations on the selectivity of immobilized alpha-chymotrypsin biocatalysts prepared for use in organic medium.
    Barros RJ; Wehtje E; Adlercreutz P
    Biotechnol Bioeng; 2000 Feb; 67(3):319-26. PubMed ID: 10620262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-function relationships in immobilized chymotrypsin catalysis.
    Clark DS; Bailey JE
    Biotechnol Bioeng; 2002 Sep; 79(5):539-49. PubMed ID: 12209825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactivation of enzymes irreversibly denatured at elevated temperature. Trypsin and alpha-chymotrypsin covalently immobilized on Sepharose 4B and in polyacrylamide gel.
    Martinek K; Mozhaev VV; Berezin IV
    Biochim Biophys Acta; 1980 Oct; 615(2):426-35. PubMed ID: 7417456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient magnetic recycling of covalently attached enzymes on carbon-coated metallic nanomagnets.
    Zlateski V; Fuhrer R; Koehler FM; Wharry S; Zeltner M; Stark WJ; Moody TS; Grass RN
    Bioconjug Chem; 2014 Apr; 25(4):677-84. PubMed ID: 24673490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of charge state and conformational change in immobilized protein using surface plasmon resonance sensor.
    Mannen T; Yamaguchi S; Honda J; Sugimoto S; Kitayama A; Nagamune T
    Anal Biochem; 2001 Jun; 293(2):185-93. PubMed ID: 11399031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of chymotrypsin on hierarchical nylon 6,6 nanofiber improves enzyme performance.
    Wong DE; Senecal KJ; Goddard JM
    Colloids Surf B Biointerfaces; 2017 Jun; 154():270-278. PubMed ID: 28351799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Native, modified, and immobilized chymotrypsin in chaotropic media. Stabilization limits].
    Panova AA; Levitskiĭ VIu; Mozhaev VV
    Bioorg Khim; 1994 Jul; 20(7):809-16. PubMed ID: 7993381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein stabilization by blocking the native unfolding nucleus.
    Schellenberger A; Ulbrich R
    Biomed Biochim Acta; 1989; 48(1):63-7. PubMed ID: 2476120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of water content on the thermostability of solid-state proteins.
    Greco G; Pirozzi D; Toscano G; Maremonti M
    Ann N Y Acad Sci; 1996 Oct; 799():108-14. PubMed ID: 8958081
    [No Abstract]   [Full Text] [Related]  

  • 14. Can immobilization be exploited to modify enzyme activity?
    Clark DS
    Trends Biotechnol; 1994 Nov; 12(11):439-43. PubMed ID: 7765542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring conformational changes of immobilized RNase A and lysozyme in reductive unfolding by surface plasmon resonance.
    Chen LY
    Anal Chim Acta; 2009 Jan; 631(1):96-101. PubMed ID: 19046685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts.
    Jia H; Zhu G; Vugrinovich B; Kataphinan W; Reneker DH; Wang P
    Biotechnol Prog; 2002; 18(5):1027-32. PubMed ID: 12363353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of enzyme properties with a two-step immobilizaton process on novel heterofunctional supports.
    Mateo C; Bolivar JM; Godoy CA; Rocha-Martin J; Pessela BC; Curiel JA; Muñoz R; Guisan JM; Fernández-Lorente G
    Biomacromolecules; 2010 Nov; 11(11):3112-7. PubMed ID: 20945834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular hydrogel-immobilized enzymes exhibit superactivity and high stability in organic solvents.
    Wang Q; Yang Z; Wang L; Ma M; Xu B
    Chem Commun (Camb); 2007 Mar; (10):1032-4. PubMed ID: 17325796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of enzymes adsorbed onto single-walled carbon nanotubes.
    Karajanagi SS; Vertegel AA; Kane RS; Dordick JS
    Langmuir; 2004 Dec; 20(26):11594-9. PubMed ID: 15595788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monolithic bioreactors: effect of chymotrypsin immobilization on its biocatalytic properties.
    Ponomareva EA; Kartuzova VE; Vlakh EG; Tennikova TB
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Feb; 878(5-6):567-74. PubMed ID: 20106728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.