These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

37 related articles for article (PubMed ID: 7786035)

  • 1. Copper, zinc superoxide dismutase in Escherichia coli: periplasmic localization.
    Benov L; Chang LY; Day B; Fridovich I
    Arch Biochem Biophys; 1995 Jun; 319(2):508-11. PubMed ID: 7786035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The antibacterial activity of a photoactivatable diarylacetylene against Gram-positive bacteria.
    Waite R; Adams CT; Chisholm DR; Sims CHC; Hughes JG; Dias E; White EA; Welsby K; Botchway SW; Whiting A; Sharples GJ; Ambler CA
    Front Microbiol; 2023; 14():1243818. PubMed ID: 37808276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying the mediators of intracellular E. coli inactivation under UVA light: The (photo) Fenton process and singlet oxygen.
    Giannakis S; Gupta A; Pulgarin C; Imlay J
    Water Res; 2022 Aug; 221():118740. PubMed ID: 35717710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Old dogs, new tricks: New insights into the iron/manganese superoxide dismutase family.
    Frye KA; Sendra KM; Waldron KJ; Kehl-Fie TE
    J Inorg Biochem; 2022 May; 230():111748. PubMed ID: 35151099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Warfare at the Microorganismal Level: A Closer Look at the Superoxide Dismutase Enzymes of Pathogens.
    Schatzman SS; Culotta VC
    ACS Infect Dis; 2018 Jun; 4(6):893-903. PubMed ID: 29517910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eukaryotic copper-only superoxide dismutases (SODs): A new class of SOD enzymes and SOD-like protein domains.
    Robinett NG; Peterson RL; Culotta VC
    J Biol Chem; 2018 Mar; 293(13):4636-4643. PubMed ID: 29259135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Adaptation to Low Copper in Candida albicans Involving SOD Enzymes and the Alternative Oxidase.
    Broxton CN; Culotta VC
    PLoS One; 2016; 11(12):e0168400. PubMed ID: 28033429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing dissolved-oxygen disrupts iron homeostasis in production cultures of Escherichia coli.
    Baez A; Shiloach J
    Antonie Van Leeuwenhoek; 2017 Jan; 110(1):115-124. PubMed ID: 27757702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases.
    Peterson RL; Galaleldeen A; Villarreal J; Taylor AB; Cabelli DE; Hart PJ; Culotta VC
    J Biol Chem; 2016 Sep; 291(40):20911-20923. PubMed ID: 27535222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of elevated oxygen concentration on bacteria, yeasts, and cells propagated for production of biological compounds.
    Baez A; Shiloach J
    Microb Cell Fact; 2014 Dec; 13():181. PubMed ID: 25547171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mixed incoherent feed-forward loop allows conditional regulation of response dynamics.
    Semsey S
    PLoS One; 2014; 9(3):e91243. PubMed ID: 24621982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans.
    Gleason JE; Li CX; Odeh HM; Culotta VC
    J Biol Inorg Chem; 2014 Jun; 19(4-5):595-603. PubMed ID: 24043471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple biological systems for assessing the activity of superoxide dismutase mimics.
    Tovmasyan A; Reboucas JS; Benov L
    Antioxid Redox Signal; 2014 May; 20(15):2416-36. PubMed ID: 23964890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structural biochemistry of the superoxide dismutases.
    Perry JJ; Shin DS; Getzoff ED; Tainer JA
    Biochim Biophys Acta; 2010 Feb; 1804(2):245-62. PubMed ID: 19914407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural properties of periplasmic SodCI that correlate with virulence in Salmonella enterica serovar Typhimurium.
    Krishnakumar R; Kim B; Mollo EA; Imlay JA; Slauch JM
    J Bacteriol; 2007 Jun; 189(12):4343-52. PubMed ID: 17416645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of superoxide dismutases: putting the metal to the pedal.
    Culotta VC; Yang M; O'Halloran TV
    Biochim Biophys Acta; 2006 Jul; 1763(7):747-58. PubMed ID: 16828895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic analysis of the metal binding mechanism of Escherichia coli manganese superoxide dismutase.
    Whittaker MM; Mizuno K; Bächinger HP; Whittaker JW
    Biophys J; 2006 Jan; 90(2):598-607. PubMed ID: 16258041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (Cyanobacteria) after years of desiccation.
    Shirkey B; Kovarcik DP; Wright DJ; Wilmoth G; Prickett TF; Helm RF; Gregory EM; Potts M
    J Bacteriol; 2000 Jan; 182(1):189-97. PubMed ID: 10613879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periplasmic superoxide dismutase in meningococcal pathogenicity.
    Wilks KE; Dunn KL; Farrant JL; Reddin KM; Gorringe AR; Langford PR; Kroll JS
    Infect Immun; 1998 Jan; 66(1):213-7. PubMed ID: 9423860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell biology and molecular basis of denitrification.
    Zumft WG
    Microbiol Mol Biol Rev; 1997 Dec; 61(4):533-616. PubMed ID: 9409151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.