These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 7786470)

  • 1. Retained activities of some membrane proteins in stable lipid bilayers on a solid support.
    Puu G; Gustafson I; Artursson E; Ohlsson PA
    Biosens Bioelectron; 1995; 10(5):463-76. PubMed ID: 7786470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution of membrane proteins: sequential incorporation of integral membrane proteins into preformed lipid bilayers.
    Scotto AW; Goodwyn D; Zakim D
    Biochemistry; 1987 Feb; 26(3):833-9. PubMed ID: 3032239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The essential role of specific Halobacterium halobium polar lipids in 2D-array formation of bacteriorhodopsin.
    Sternberg B; L'Hostis C; Whiteway CA; Watts A
    Biochim Biophys Acta; 1992 Jul; 1108(1):21-30. PubMed ID: 1643078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmembranous incorporation of photoelectrically active bacteriorhodopsin in planar lipid bilayers.
    Bamberg E; Dencher NA; Fahr A; Heyn MP
    Proc Natl Acad Sci U S A; 1981 Dec; 78(12):7502-6. PubMed ID: 6278476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of membrane proteins. Spontaneous association of integral membrane proteins with preformed unilamellar lipid bilayers.
    Scotto AW; Zakim D
    Biochemistry; 1985 Jul; 24(15):4066-75. PubMed ID: 2996590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural determinants of purple membrane assembly.
    Krebs MP; Isenbarger TA
    Biochim Biophys Acta; 2000 Aug; 1460(1):15-26. PubMed ID: 10984587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of membrane proteins: catalysis by cholesterol of insertion of integral membrane proteins into preformed lipid bilayers.
    Scotto AW; Zakim D
    Biochemistry; 1986 Apr; 25(7):1555-61. PubMed ID: 3011065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of diacylphospholipids as boundary lipids for bacteriorhodopsin from structural and functional aspects.
    Kawatake S; Umegawa Y; Matsuoka S; Murata M; Sonoyama M
    Biochim Biophys Acta; 2016 Sep; 1858(9):2106-2115. PubMed ID: 27301269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution and stability of membrane proteins in lipid membranes on solid supports.
    Puu G; Artursson E; Gustafson I; Lundström M; Jass J
    Biosens Bioelectron; 2000 Mar; 15(1-2):31-41. PubMed ID: 10826641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-transducing properties of primary proton pumps reconstituted into archaeal bipolar lipid vesicles.
    Elferink MG; De Wit JG; Driessen AJ; Konings WN
    Eur J Biochem; 1993 Jun; 214(3):917-25. PubMed ID: 8391438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the bacteriorhodopsin proton pump of Halobacterium halobium and other membrane proteins.
    McLachlan AD; Henderson R
    Biochem Soc Trans; 1980 Dec; 8(6):677-8. PubMed ID: 6257564
    [No Abstract]   [Full Text] [Related]  

  • 12. Lipid-induced conformational changes of an integral membrane protein: an infrared spectroscopic study of the effects of Triton X-100 treatment on the purple membrane of Halobacterium halobium ET1001.
    Barnett SM; Dracheva S; Hendler R; Levin IW
    Biochemistry; 1996 Apr; 35(14):4558-67. PubMed ID: 8605206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delipidation of bacteriorhodopsin and reconstitution with exogenous phospholipid.
    Huang KS; Bayley H; Khorana HG
    Proc Natl Acad Sci U S A; 1980 Jan; 77(1):323-7. PubMed ID: 6928624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Backbone dynamics of membrane proteins in lipid bilayers: the effect of two-dimensional array formation as revealed by site-directed solid-state 13C NMR studies on [3-13C]Ala- and [1-13C]Val-labeled bacteriorhodopsin.
    Saitô H; Yamamoto K; Tuzi S; Yamaguchi S
    Biochim Biophys Acta; 2003 Oct; 1616(2):127-36. PubMed ID: 14561470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution of acetylcholine receptor function in model membranes.
    McNamee MG; Ochoa EL
    Neuroscience; 1982 Oct; 7(10):2305-19. PubMed ID: 6757782
    [No Abstract]   [Full Text] [Related]  

  • 16. Lipid-protein interactions at the nicotinic acetylcholine receptor. A functional coupling between nicotinic receptors and phosphatidic acid-containing lipid bilayers.
    daCosta CJ; Ogrel AA; McCardy EA; Blanton MP; Baenziger JE
    J Biol Chem; 2002 Jan; 277(1):201-8. PubMed ID: 11682482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of membrane lipids on the photochemistry of bacteriorhodopsin in the purple membrane of Halobacterium halobium.
    Sherman WV; Caplan SR
    Biochim Biophys Acta; 1978 May; 502(2):222-31. PubMed ID: 580766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The preparation of lipid-depleted bacteriorhodopsin.
    Wildenauer D; Khorana HG
    Biochim Biophys Acta; 1977 Apr; 466(2):315-24. PubMed ID: 857886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural changes in lipid bilayers and biological membranes caused hydrostatic pressure.
    Braganza LF; Worcester DL
    Biochemistry; 1986 Nov; 25(23):7484-8. PubMed ID: 3801427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylcholine receptor in planar lipid bilayers. Characterization of the channel properties of the purified nicotinic acetylcholine receptor from Torpedo californica reconstituted in planar lipid bilayers.
    Labarca P; Lindstrom J; Montal M
    J Gen Physiol; 1984 Apr; 83(4):473-96. PubMed ID: 6144720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.