BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 7786961)

  • 1. Sensory cortical processing and the biological basis of personality.
    Hegerl U; Gallinat J; Mrowinski D
    Biol Psychiatry; 1995 Apr; 37(7):467-72. PubMed ID: 7786961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Tridimensional Personality Questionnaire and the intensity dependence of auditory evoked dipole source activity.
    Juckel G; Schmidt LG; Rommelspacher H; Hegerl U
    Biol Psychiatry; 1995 Mar; 37(5):311-7. PubMed ID: 7748982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory evoked dipole source activity: indicator of central serotonergic dysfunction in psychiatric patients?
    Hegerl U; Juckel G
    Pharmacopsychiatry; 1994 Mar; 27(2):75-8. PubMed ID: 8029316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intensity dependence of auditory evoked dipole source activity.
    Hegerl U; Gallinat J; Mrowinski D
    Int J Psychophysiol; 1994 Jun; 17(1):1-13. PubMed ID: 7961049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An electrophysiological endophenotype of hypomanic and hyperthymic personality.
    Hensch T; Herold U; Brocke B
    J Affect Disord; 2007 Aug; 101(1-3):13-26. PubMed ID: 17207536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intensity dependence of auditory evoked potentials as an indicator of central serotonergic neurotransmission: a new hypothesis.
    Hegerl U; Juckel G
    Biol Psychiatry; 1993 Feb; 33(3):173-87. PubMed ID: 8383545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the potentials recorded from the occipital, temporal and central regions of the human scalp, evoked by visual, auditory and somato-sensory stimuli.
    Gastaut H; Régis H; Lyagoubi S; Mano T; Simon L
    Electroencephalogr Clin Neurophysiol; 1967; ():Suppl 26:19-28. PubMed ID: 4177142
    [No Abstract]   [Full Text] [Related]  

  • 8. Localization of human supratemporal auditory areas from intracerebral auditory evoked potentials using distributed source models.
    Yvert B; Fischer C; Bertrand O; Pernier J
    Neuroimage; 2005 Oct; 28(1):140-53. PubMed ID: 16039144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory gating of auditory evoked and induced gamma band activity in intracranial recordings.
    Trautner P; Rosburg T; Dietl T; Fell J; Korzyukov OA; Kurthen M; Schaller C; Elger CE; Boutros NN
    Neuroimage; 2006 Aug; 32(2):790-8. PubMed ID: 16809054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral information processing in personality disorders: I. Intensity dependence of auditory evoked potentials.
    Wang W; Wang Y; Fu X; Liu J; He C; Dong Y; Livesley WJ; Jang KL
    Psychiatry Res; 2006 Feb; 141(2):173-83. PubMed ID: 16499979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical correlates of auditory sensory gating: a simultaneous near-infrared spectroscopy event-related potential study.
    Ehlis AC; Ringel TM; Plichta MM; Richter MM; Herrmann MJ; Fallgatter AJ
    Neuroscience; 2009 Mar; 159(3):1032-43. PubMed ID: 19356687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is the failure to detect stimulus deviance during sleep due to a rapid fading of sensory memory or a degradation of stimulus encoding?
    Sabri M; Campbell KB
    J Sleep Res; 2005 Jun; 14(2):113-22. PubMed ID: 15910509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N2 event-related potential correlates of response inhibition in an auditory Go/Nogo task.
    Kaiser S; Weiss O; Hill H; Markela-Lerenc J; Kiefer M; Weisbrod M
    Int J Psychophysiol; 2006 Aug; 61(2):279-82. PubMed ID: 16298004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A functional disturbance in the auditory cortex related to a low serotonergic neurotransmission in women with type 2 diabetes.
    Manjarrez G; Vazquez F; Delgado M; Herrera R; Hernandez J
    Neuroendocrinology; 2007; 86(4):289-94. PubMed ID: 17911977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intensity dependence of auditory-evoked cortical potentials in fibromyalgia patients: a test of the generalized hypervigilance hypothesis.
    Carrillo-de-la-Peña MT; Vallet M; Pérez MI; Gómez-Perretta C
    J Pain; 2006 Jul; 7(7):480-7. PubMed ID: 16814687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient brain responses predict the temporal dynamics of sound detection in humans.
    Mäkinen V; May P; Tiitinen H
    Neuroimage; 2004 Feb; 21(2):701-6. PubMed ID: 14980572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results.
    Opitz B; Rinne T; Mecklinger A; von Cramon DY; Schröger E
    Neuroimage; 2002 Jan; 15(1):167-74. PubMed ID: 11771985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal envelope processing in the human left and right auditory cortices.
    Liégeois-Chauvel C; Lorenzi C; Trébuchon A; Régis J; Chauvel P
    Cereb Cortex; 2004 Jul; 14(7):731-40. PubMed ID: 15054052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonspatial intermodal selective attention is mediated by sensory brain areas: evidence from event-related potentials.
    Talsma D; Kok A
    Psychophysiology; 2001 Sep; 38(5):736-51. PubMed ID: 11577897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Final common pathway for tinnitus: theoretical and clinical implications of neuroanatomical substrates.
    Shulman A; Goldstein B; Strashun AM
    Int Tinnitus J; 2009; 15(1):5-50. PubMed ID: 19842346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.