BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 7787017)

  • 1. Molecular dynamics study of the 13-cis form (bR548) of bacteriorhodopsin and its photocycle.
    Logunov I; Humphrey W; Schulten K; Sheves M
    Biophys J; 1995 Apr; 68(4):1270-82. PubMed ID: 7787017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the 13-cis isomer of bacteriorhodopsin in the dark-adapted state.
    Nishikawa T; Murakami M; Kouyama T
    J Mol Biol; 2005 Sep; 352(2):319-28. PubMed ID: 16084526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics study of the proton pump cycle of bacteriorhodopsin.
    Zhou F; Windemuth A; Schulten K
    Biochemistry; 1993 Mar; 32(9):2291-306. PubMed ID: 8443172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation analysis of the retinal conformational equilibrium in dark-adapted bacteriorhodopsin.
    Baudry J; Crouzy S; Roux B; Smith JC
    Biophys J; 1999 Apr; 76(4):1909-17. PubMed ID: 10096888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Met-145 is a key residue in the dark adaptation of bacteriorhodopsin homologs.
    Ihara K; Amemiya T; Miyashita Y; Mukohata Y
    Biophys J; 1994 Sep; 67(3):1187-91. PubMed ID: 7811932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal equilibration between the M and N intermediates in the photocycle of bacteriorhodopsin.
    Druckmann S; Heyn MP; Lanyi JK; Ottolenghi M; Zimanyi L
    Biophys J; 1993 Sep; 65(3):1231-4. PubMed ID: 8241403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics study of early picosecond events in the bacteriorhodopsin photocycle: dielectric response, vibrational cooling and the J, K intermediates.
    Xu D; Martin C; Schulten K
    Biophys J; 1996 Jan; 70(1):453-60. PubMed ID: 8770221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid state NMR study of [epsilon-13C]Lys-bacteriorhodopsin: Schiff base photoisomerization.
    Farrar MR; Lakshmi KV; Smith SO; Brown RS; Raap J; Lugtenburg J; Griffin RG; Herzfeld J
    Biophys J; 1993 Jul; 65(1):310-5. PubMed ID: 8369438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photochemical conversion of the O-intermediate to 9-cis-retinal-containing products in bacteriorhodopsin films.
    Popp A; Wolperdinger M; Hampp N; Brüchle C; Oesterhelt D
    Biophys J; 1993 Oct; 65(4):1449-59. PubMed ID: 8274639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing BR photocycle kinetics.
    Nagle JF; Zimanyi L; Lanyi JK
    Biophys J; 1995 Apr; 68(4):1490-9. PubMed ID: 7787034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-state 13C NMR of the retinal chromophore in photointermediates of bacteriorhodopsin: characterization of two forms of M.
    Smith SO; Courtin J; van den Berg E; Winkel C; Lugtenburg J; Herzfeld J; Griffin RG
    Biochemistry; 1989 Jan; 28(1):237-43. PubMed ID: 2706247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of protein conformation change from alpha(II) to alpha(I) on the bacteriorhodopsin photocycle.
    Wang J; El-Sayed MA
    Biophys J; 2000 Apr; 78(4):2031-6. PubMed ID: 10733981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure-induced isomerization of retinal on bacteriorhodopsin as disclosed by fast magic angle spinning NMR.
    Kawamura I; Degawa Y; Yamaguchi S; Nishimura K; Tuzi S; Saitô H; Naito A
    Photochem Photobiol; 2007; 83(2):346-50. PubMed ID: 17076543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of photo-intermediates in the photo-reaction pathways of a bacteriorhodopsin Y185F mutant using in situ photo-irradiation solid-state NMR spectroscopy.
    Oshima K; Shigeta A; Makino Y; Kawamura I; Okitsu T; Wada A; Tuzi S; Iwasa T; Naito A
    Photochem Photobiol Sci; 2015 Sep; 14(9):1694-702. PubMed ID: 26169449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tyrosine protonation changes in bacteriorhodopsin. A Fourier transform infrared study of BR548 and its primary photoproduct.
    Roepe PD; Ahl PL; Herzfeld J; Lugtenburg J; Rothschild KJ
    J Biol Chem; 1988 Apr; 263(11):5110-7. PubMed ID: 3356682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship of proton release at the extracellular surface to deprotonation of the schiff base in the bacteriorhodopsin photocycle.
    Cao Y; Brown LS; Sasaki J; Maeda A; Needleman R; Lanyi JK
    Biophys J; 1995 Apr; 68(4):1518-30. PubMed ID: 7787037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fourier transform infrared double-flash experiments resolve bacteriorhodopsin's M1 to M2 transition.
    Hessling B; Herbst J; Rammelsberg R; Gerwert K
    Biophys J; 1997 Oct; 73(4):2071-80. PubMed ID: 9336202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replacement effects of neutral amino acid residues of different molecular volumes in the retinal binding cavity of bacteriorhodopsin on the dynamics of its primary process.
    Logunov SL; el-Sayed MA; Lanyi JK
    Biophys J; 1996 Jun; 70(6):2875-81. PubMed ID: 8744325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two progressive substrates of the M-intermediate can be identified in glucose-embedded, wild-type bacteriorhodopsin.
    Vonck J; Han BG; Burkard F; Perkins GA; Glaeser RM
    Biophys J; 1994 Sep; 67(3):1173-8. PubMed ID: 7811930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.