These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 7787025)
1. Macro-ripple phase formation in bilayers composed of galactosylceramide and phosphatidylcholine. Brown RE; Anderson WH; Kulkarni VS Biophys J; 1995 Apr; 68(4):1396-405. PubMed ID: 7787025 [TBL] [Abstract][Full Text] [Related]
2. Bilayer nanotubes and helical ribbons formed by hydrated galactosylceramides: acyl chain and headgroup effects. Kulkarni VS; Anderson WH; Brown RE Biophys J; 1995 Nov; 69(5):1976-86. PubMed ID: 8580341 [TBL] [Abstract][Full Text] [Related]
3. Structural determinants of miscibility in surface films of galactosylceramide and phosphatidylcholine: effect of unsaturation in the galactosylceramide acyl chain. Ali S; Brockman HL; Brown RE Biochemistry; 1991 Nov; 30(47):11198-205. PubMed ID: 1958657 [TBL] [Abstract][Full Text] [Related]
4. Fluid-phase chain unsaturation controlling domain microstructure and phase in ternary lipid bilayers containing GalCer and cholesterol. Lin WC; Blanchette CD; Longo ML Biophys J; 2007 Apr; 92(8):2831-41. PubMed ID: 17237202 [TBL] [Abstract][Full Text] [Related]
5. Glycosphingolipid acyl chain orientational order in unsaturated phosphatidylcholine bilayers. Morrow MR; Singh D; Lu D; Grant CW Biophys J; 1993 Mar; 64(3):654-64. PubMed ID: 8471718 [TBL] [Abstract][Full Text] [Related]
6. Condition for the appearance of the metastable P beta' phase in fully hydrated phosphatidylcholines as studied by small-angle x-ray diffraction. Matuoka S; Yao H; Kato S; Hatta I Biophys J; 1993 May; 64(5):1456-60. PubMed ID: 8324182 [TBL] [Abstract][Full Text] [Related]
7. The interfacial elastic packing interactions of galactosylceramides, sphingomyelins, and phosphatidylcholines. Smaby JM; Kulkarni VS; Momsen M; Brown RE Biophys J; 1996 Feb; 70(2):868-77. PubMed ID: 8789104 [TBL] [Abstract][Full Text] [Related]
8. The structure and thermotropic phase behaviour of dipalmitoylphosphatidylcholine codispersed with a branched-chain phosphatidylcholine. Semmler K; Meyer HW; Quinn PJ Biochim Biophys Acta; 2000 Dec; 1509(1-2):385-96. PubMed ID: 11118548 [TBL] [Abstract][Full Text] [Related]
9. Thermally induced phase separation in supported bilayers of glycosphingolipid and phospholipid mixtures. Szmodis AW; Blanchette CD; Longo ML; Orme CA; Parikh AN Biointerphases; 2010 Dec; 5(4):120-30. PubMed ID: 21219033 [TBL] [Abstract][Full Text] [Related]
10. Molecular dynamics simulations and 2H NMR study of the GalCer/DPPG lipid bilayer. Zaraiskaya T; Jeffrey KR Biophys J; 2005 Jun; 88(6):4017-31. PubMed ID: 15764671 [TBL] [Abstract][Full Text] [Related]
11. Supramolecular organization of α-galactosylceramide in pure dispersions and in cationic DODAB bilayers. Martins LS; Duarte EL; Lamy MT; Rozenfeld JHK Chem Phys Lipids; 2020 Oct; 232():104963. PubMed ID: 32882224 [TBL] [Abstract][Full Text] [Related]
12. Evidence for superlattice arrangements in fluid phosphatidylcholine/phosphatidylethanolamine bilayers. Cheng KH; Ruonala M; Virtanen J; Somerharju P Biophys J; 1997 Oct; 73(4):1967-76. PubMed ID: 9336192 [TBL] [Abstract][Full Text] [Related]
13. Barotropic and thermotropic bilayer phase behavior of positional isomers of unsaturated mixed-chain phosphatidylcholines. Tada K; Miyazaki E; Goto M; Tamai N; Matsuki H; Kaneshina S Biochim Biophys Acta; 2009 May; 1788(5):1056-63. PubMed ID: 19233121 [TBL] [Abstract][Full Text] [Related]
14. Clarification of the ripple phase of lecithin bilayers using fully hydrated, aligned samples. Katsaras J; Tristram-Nagle S; Liu Y; Headrick RL; Fontes E; Mason PC; Nagle JF Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5 Pt B):5668-77. PubMed ID: 11031625 [TBL] [Abstract][Full Text] [Related]
15. Mean-field calculations of chain packing and conformational statistics in lipid bilayers: comparison with experiments and molecular dynamics studies. Fattal DR; Ben-Shaul A Biophys J; 1994 Sep; 67(3):985-95. PubMed ID: 7811955 [TBL] [Abstract][Full Text] [Related]
16. Role of glycolipids in lipid rafts: a view through atomistic molecular dynamics simulations with galactosylceramide. Hall A; Róg T; Karttunen M; Vattulainen I J Phys Chem B; 2010 Jun; 114(23):7797-807. PubMed ID: 20496924 [TBL] [Abstract][Full Text] [Related]
17. The 3-hydroxy group and 4,5-trans double bond of sphingomyelin are essential for modulation of galactosylceramide transmembrane asymmetry. Malewicz B; Valiyaveettil JT; Jacob K; Byun HS; Mattjus P; Baumann WJ; Bittman R; Brown RE Biophys J; 2005 Apr; 88(4):2670-80. PubMed ID: 15653730 [TBL] [Abstract][Full Text] [Related]
18. Structure of symmetric and asymmetric "ripple" phases in lipid bilayers. Lenz O; Schmid F Phys Rev Lett; 2007 Feb; 98(5):058104. PubMed ID: 17358906 [TBL] [Abstract][Full Text] [Related]
19. Structure and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine bilayer membranes. Shah J; Duclos RI; Shipley GG Biophys J; 1994 May; 66(5):1469-78. PubMed ID: 8061196 [TBL] [Abstract][Full Text] [Related]
20. Gel phase preference of ganglioside GM1 at low concentration in two-component, two-phase phosphatidylcholine bilayers depends upon the ceramide moiety. Palestini P; Allietta M; Sonnino S; Tettamanti G; Thompson TE; Tillack TW Biochim Biophys Acta; 1995 May; 1235(2):221-30. PubMed ID: 7756329 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]