These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 7787044)

  • 1. Stark effect spectroscopy of tryptophan.
    Pierce DW; Boxer SG
    Biophys J; 1995 Apr; 68(4):1583-91. PubMed ID: 7787044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein in sugar films and in glycerol/water as examined by infrared spectroscopy and by the fluorescence and phosphorescence of tryptophan.
    Wright WW; Guffanti GT; Vanderkooi JM
    Biophys J; 2003 Sep; 85(3):1980-95. PubMed ID: 12944311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionization potentials of fluoroindoles and the origin of nonexponential tryptophan fluorescence decay in proteins.
    Liu T; Callis PR; Hesp BH; de Groot M; Buma WJ; Broos J
    J Am Chem Soc; 2005 Mar; 127(11):4104-13. PubMed ID: 15771548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional electric field changes in photoactivated proteins revealed by ultrafast Stark spectroscopy of the Trp residues.
    Léonard J; Portuondo-Campa E; Cannizzo A; van Mourik F; van der Zwan G; Tittor J; Haacke S; Chergui M
    Proc Natl Acad Sci U S A; 2009 May; 106(19):7718-23. PubMed ID: 19416877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolution of Trp near UV CD spectra of calmodulin-domain peptide complexes into the 1La and 1Lb component spectra.
    Barth A; Martin SR; Bayley PM
    Biopolymers; 1998 Jun; 45(7):493-501. PubMed ID: 9577230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Second derivative fluorescence spectroscopy of tryptophan in proteins.
    Mozo-Villarías A
    J Biochem Biophys Methods; 2002 Jan; 50(2-3):163-78. PubMed ID: 11741705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Polarization of the intrinsic fluorescence of proteins. I. Factors determining the form of the polarization spectrum].
    Kuznetsova IM; Kirik II; Turoverov KK
    Mol Biol (Mosk); 1981; 15(5):989-99. PubMed ID: 6795445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dipolar relaxation in proteins on the nanosecond timescale observed by wavelength-resolved phase fluorometry of tryptophan fluorescence.
    Lakowicz JR; Cherek H
    J Biol Chem; 1980 Feb; 255(3):831-4. PubMed ID: 7356662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen bonding and solvent polarity markers in the uv resonance raman spectrum of tryptophan: application to membrane proteins.
    Schlamadinger DE; Gable JE; Kim JE
    J Phys Chem B; 2009 Nov; 113(44):14769-78. PubMed ID: 19817473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved fluorescence of the single tryptophan of Bacillus stearothermophilus phosphofructokinase.
    Kim SJ; Chowdhury FN; Stryjewski W; Younathan ES; Russo PS; Barkley MD
    Biophys J; 1993 Jul; 65(1):215-26. PubMed ID: 8369432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tryptophan interactions with glycerol/water and trehalose/sucrose cryosolvents: infrared and fluorescence spectroscopy and ab initio calculations.
    Dashnau JL; Zelent B; Vanderkooi JM
    Biophys Chem; 2005 Apr; 114(1):71-83. PubMed ID: 15792863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvent effects on the fluorescence quenching of tryptophan by amides via electron transfer. Experimental and computational studies.
    Muiño PL; Callis PR
    J Phys Chem B; 2009 Mar; 113(9):2572-7. PubMed ID: 18672928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The component analysis of tryptophan fluorescence spectra of melittin during its oligomerization].
    Emel'ianenko VI; Grishchenko VM; Burshteĭn EA
    Biofizika; 2005; 50(4):623-30. PubMed ID: 16212052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deconvolution of C-phycocyanin beta-84 and beta-155 chromophore absorption and fluorescence spectra of cyanobacterium Mastigocladus laminosus.
    Demidov AA; Mimuro M
    Biophys J; 1995 Apr; 68(4):1500-6. PubMed ID: 7787035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Femtosecond studies of tryptophan fluorescence dynamics in proteins: local solvation and electronic quenching.
    Zhang L; Kao YT; Qiu W; Wang L; Zhong D
    J Phys Chem B; 2006 Sep; 110(37):18097-103. PubMed ID: 16970418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photophysical properties of ricin.
    Gaigalas AK; Cole KD; Bykadi S; Wang L; DeRose P
    Photochem Photobiol; 2007; 83(5):1149-56. PubMed ID: 17880509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivity of singlet oxygen with tryptophan residues and with melittin in liposome systems.
    Vilensky A; Feitelson J
    Photochem Photobiol; 1999 Dec; 70(6):841-6. PubMed ID: 10628297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melittin as model system for probing interactions between proteins and cyclodextrins.
    Khajehpour M; Troxler T; Nanda V; Vanderkooi JM
    Proteins; 2004 May; 55(2):275-87. PubMed ID: 15048821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stopped-flow fluorometric study of the interaction of melittin with phospholipid bilayers: importance of the physical state of the bilayer and the acyl chain length.
    Bradrick TD; Philippetis A; Georghiou S
    Biophys J; 1995 Nov; 69(5):1999-2010. PubMed ID: 8580343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of tryptophan fluorescence shifts in proteins.
    Vivian JT; Callis PR
    Biophys J; 2001 May; 80(5):2093-109. PubMed ID: 11325713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.