These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 7787045)
1. Calculation of resonance energy transfer in crowded biological membranes. Zimet DB; Thevenin BJ; Verkman AS; Shohet SB; Abney JR Biophys J; 1995 Apr; 68(4):1592-603. PubMed ID: 7787045 [TBL] [Abstract][Full Text] [Related]
2. Non-uniform membrane probe distribution in resonance energy transfer: application to protein-lipid selectivity. Capeta RC; Poveda JA; Loura LM J Fluoresc; 2006 Mar; 16(2):161-72. PubMed ID: 16532364 [TBL] [Abstract][Full Text] [Related]
3. Theory for establishing proximity relations in biological membranes by excitation energy transfer measurements. Yguerabide J Biophys J; 1994 Mar; 66(3 Pt 1):683-93. PubMed ID: 8011899 [TBL] [Abstract][Full Text] [Related]
4. Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer. Antollini SS; Soto MA; Bonini de Romanelli I; Gutiérrez-Merino C; Sotomayor P; Barrantes FJ Biophys J; 1996 Mar; 70(3):1275-84. PubMed ID: 8785283 [TBL] [Abstract][Full Text] [Related]
5. Lateral diffusion coefficients in membranes measured by resonance energy transfer and a new algorithm for diffusion in two dimensions. Kuśba J; Li L; Gryczynski I; Piszczek G; Johnson M; Lakowicz JR Biophys J; 2002 Mar; 82(3):1358-72. PubMed ID: 11867452 [TBL] [Abstract][Full Text] [Related]
6. Calculation on fluorescence resonance energy transfer on surfaces. Dewey TG; Hammes GG Biophys J; 1980 Dec; 32(3):1023-35. PubMed ID: 7260308 [TBL] [Abstract][Full Text] [Related]
7. Effect of membrane microheterogeneity and domain size on fluorescence resonance energy transfer. Towles KB; Brown AC; Wrenn SP; Dan N Biophys J; 2007 Jul; 93(2):655-67. PubMed ID: 17449659 [TBL] [Abstract][Full Text] [Related]
8. Insertion and hairpin formation of membrane proteins: a Monte Carlo study. Baumgärtner A Biophys J; 1996 Sep; 71(3):1248-55. PubMed ID: 8873999 [TBL] [Abstract][Full Text] [Related]
9. Analysis of resonance energy transfer in model membranes: role of orientational effects. Domanov YA; Gorbenko GP Biophys Chem; 2002 Oct; 99(2):143-54. PubMed ID: 12377365 [TBL] [Abstract][Full Text] [Related]
10. Fluorescence energy transfer in two dimensions. A numeric solution for random and nonrandom distributions. Snyder B; Freire E Biophys J; 1982 Nov; 40(2):137-48. PubMed ID: 7171709 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence energy transfer from diphenylhexatriene to bacteriorhodopsin in lipid vesicles. Rehorek M; Dencher NA; Heyn MP Biophys J; 1983 Jul; 43(1):39-45. PubMed ID: 6882861 [TBL] [Abstract][Full Text] [Related]
12. A fluorescence energy transfer method for analyzing protein oligomeric structure: application to phospholamban. Li M; Reddy LG; Bennett R; Silva ND; Jones LR; Thomas DD Biophys J; 1999 May; 76(5):2587-99. PubMed ID: 10233073 [TBL] [Abstract][Full Text] [Related]
13. Resonance energy transfer from a cylindrical distribution of donors to a plane of acceptors. Location of apo-B100 protein on the human low-density lipoprotein particle. Bastiaens P; de Beus A; Lacker M; Somerharju P; Vauhkonen M; Eisinger J Biophys J; 1990 Sep; 58(3):665-75. PubMed ID: 2207257 [TBL] [Abstract][Full Text] [Related]
14. Lipid membranes with free edges. Tu ZC; Ou-Yang ZC Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061915. PubMed ID: 14754242 [TBL] [Abstract][Full Text] [Related]
15. The spatial structure of lipids in human leukocytes: studies by nonradiative energy transfer. Gularian SK; Dobretsov GE; Kurek NK; Svetlichny VY Membr Cell Biol; 1997; 10(6):639-48. PubMed ID: 9231362 [TBL] [Abstract][Full Text] [Related]
16. Flexible charged macromolecules on mixed fluid lipid membranes: theory and Monte Carlo simulations. Tzlil S; Ben-Shaul A Biophys J; 2005 Nov; 89(5):2972-87. PubMed ID: 16126828 [TBL] [Abstract][Full Text] [Related]
17. Cytochrome c induces lipid demixing in weakly charged phosphatidylcholine/phosphatidylglycerol model membranes as evidenced by resonance energy transfer. Gorbenko GP; Trusova VM; Molotkovsky JG; Kinnunen PK Biochim Biophys Acta; 2009 Jun; 1788(6):1358-65. PubMed ID: 19327342 [TBL] [Abstract][Full Text] [Related]
18. Energy transfer method in membrane studies: some theoretical and practical aspects. Gorbenko GP; Domanov YA J Biochem Biophys Methods; 2002 Jun; 52(1):45-58. PubMed ID: 12121753 [TBL] [Abstract][Full Text] [Related]
19. Enhanced Emission Induced by FRET from a Long-Lifetime, Low Quantum Yield Donor to a Long-Wavelength, High Quantum Yield Acceptor. Kang JS; Piszczek G; Lakowicz JR J Fluoresc; 2002 Mar; 12(1):97-103. PubMed ID: 32148386 [TBL] [Abstract][Full Text] [Related]
20. Fluorescence-quenching and resonance energy transfer studies of lipid microdomains in model and biological membranes. Silvius JR; Nabi IR Mol Membr Biol; 2006; 23(1):5-16. PubMed ID: 16611577 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]