These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 7787052)

  • 1. Function of the N terminus of the myosin essential light chain of vertebrate striated muscle.
    Sweeney HL
    Biophys J; 1995 Apr; 68(4 Suppl):112S-118S; discussion 118S-119S. PubMed ID: 7787052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of a non-divalent cation binding mutant of myosin regulatory light chain on tension generation in skinned skeletal muscle fibers.
    Diffee GM; Greaser ML; Reinach FC; Moss RL
    Biophys J; 1995 Apr; 68(4):1443-52. PubMed ID: 7787030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transients of fluorescence polarization in skeletal muscle fibers labeled with rhodamine on the regulatory light chain.
    Allen TS; Sabido-David C; Ling N; Irving M; Goldman YE
    Biophys J; 1995 Apr; 68(4 Suppl):81S-84S; discussion 85S-86S. PubMed ID: 7787113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-induced structural changes in the myosin thick filament of skinned rabbit psoas muscle.
    Malinchik S; Xu S; Yu LC
    Biophys J; 1997 Nov; 73(5):2304-12. PubMed ID: 9370427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional responses of mammalian thick filaments to alterations in myosin regulatory light chains.
    Levine RJ; Yang Z; Epstein ND; Fananapazir L; Stull JT; Sweeney HL
    J Struct Biol; 1998; 122(1-2):149-61. PubMed ID: 9724616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The essential light chain is required for full force production by skeletal muscle myosin.
    VanBuren P; Waller GS; Harris DE; Trybus KM; Warshaw DM; Lowey S
    Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12403-7. PubMed ID: 7809049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of phosphate and ADP on shortening velocity during maximal and submaximal calcium activation of the thin filament in skeletal muscle fibers.
    Metzger JM
    Biophys J; 1996 Jan; 70(1):409-17. PubMed ID: 8770217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependence of the inhibitory effects of orthovanadate on shortening velocity in fast skeletal muscle.
    Pate E; Wilson GJ; Bhimani M; Cooke R
    Biophys J; 1994 May; 66(5):1554-62. PubMed ID: 8061204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C-terminal isoforms of the myosin heavy chain and smooth muscle function.
    Martin AF; Bhatti S; Paul RJ
    Comp Biochem Physiol B Biochem Mol Biol; 1997 May; 117(1):3-11. PubMed ID: 9180009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actin sliding on reconstituted myosin filaments containing only one myosin heavy chain isoform.
    Scholz T; Brenner B
    J Muscle Res Cell Motil; 2003; 24(1):77-86. PubMed ID: 12953838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of regulatory effect of tropomyosin on actin-myosin interaction in skeletal muscle by in vitro motility assay.
    Kopylova GV; Shchepkin DV; Nikitina LV
    Biochemistry (Mosc); 2013 Mar; 78(3):260-6. PubMed ID: 23586719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for an interaction between the SH3 domain and the N-terminal extension of the essential light chain in class II myosins.
    Lowey S; Saraswat LD; Liu H; Volkmann N; Hanein D
    J Mol Biol; 2007 Aug; 371(4):902-13. PubMed ID: 17597155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+ sensitivity of regulated cardiac thin filament sliding does not depend on myosin isoform.
    Schoffstall B; Brunet NM; Williams S; Miller VF; Barnes AT; Wang F; Compton LA; McFadden LA; Taylor DW; Seavy M; Dhanarajan R; Chase PB
    J Physiol; 2006 Dec; 577(Pt 3):935-44. PubMed ID: 17008370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of the N-terminus of chicken skeletal essential light chain 1 with F-actin.
    Andreev OA; Saraswat LD; Lowey S; Slaughter C; Borejdo J
    Biochemistry; 1999 Feb; 38(8):2480-5. PubMed ID: 10029542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myosin essential light chain in health and disease.
    Hernandez OM; Jones M; Guzman G; Szczesna-Cordary D
    Am J Physiol Heart Circ Physiol; 2007 Apr; 292(4):H1643-54. PubMed ID: 17142342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal muscle myosin light chains are essential for physiological speeds of shortening.
    Lowey S; Waller GS; Trybus KM
    Nature; 1993 Sep; 365(6445):454-6. PubMed ID: 8413589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The load dependence and the force-velocity relation in intact myosin filaments from skeletal and smooth muscles.
    Cheng YS; de Souza Leite F; Rassier DE
    Am J Physiol Cell Physiol; 2020 Jan; 318(1):C103-C110. PubMed ID: 31618078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of essential light chain EF hand domains in calcium binding and regulation of scallop myosin.
    Fromherz S; Szent-Györgyi AG
    Proc Natl Acad Sci U S A; 1995 Aug; 92(17):7652-6. PubMed ID: 7644472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of skeletal and smooth muscle myosin light chains.
    Lowey S; Trybus KM
    Biophys J; 1995 Apr; 68(4 Suppl):120S-126S; discussion 126S-127S. PubMed ID: 7787054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.