These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 7787066)
1. A new method for the time-resolved measurement of phosphate release in permeabilized muscle fibers. Ferenczi MA; He ZH; Chillingworth RK; Brune M; Corrie JE; Trentham DR; Webb MR Biophys J; 1995 Apr; 68(4 Suppl):191S-192S; discussion 192S-193S. PubMed ID: 7787066 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate. White HD; Belknap B; Webb MR Biochemistry; 1997 Sep; 36(39):11828-36. PubMed ID: 9305974 [TBL] [Abstract][Full Text] [Related]
3. ATPase kinetics on activation of rabbit and frog permeabilized isometric muscle fibres: a real time phosphate assay. He ZH; Chillingworth RK; Brune M; Corrie JE; Trentham DR; Webb MR; Ferenczi MA J Physiol; 1997 May; 501 ( Pt 1)(Pt 1):125-48. PubMed ID: 9174999 [TBL] [Abstract][Full Text] [Related]
4. Rate of phosphate release after photoliberation of adenosine 5'-triphosphate in slow and fast skeletal muscle fibers. He Z; Stienen GJ; Barends JP; Ferenczi MA Biophys J; 1998 Nov; 75(5):2389-401. PubMed ID: 9788934 [TBL] [Abstract][Full Text] [Related]
5. Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase. Brune M; Hunter JL; Corrie JE; Webb MR Biochemistry; 1994 Jul; 33(27):8262-71. PubMed ID: 8031761 [TBL] [Abstract][Full Text] [Related]
6. Time-resolved measurements of phosphate release by cycling cross-bridges in portal vein smooth muscle. He ZH; Ferenczi MA; Brune M; Trentham DR; Webb MR; Somlyo AP; Somlyo AV Biophys J; 1998 Dec; 75(6):3031-40. PubMed ID: 9826623 [TBL] [Abstract][Full Text] [Related]
7. Phosphate release during microtubule assembly: what stabilizes growing microtubules? Vandecandelaere A; Brune M; Webb MR; Martin SR; Bayley PM Biochemistry; 1999 Jun; 38(25):8179-88. PubMed ID: 10387063 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of phosphate binding protein labeled with a coumarin fluorophore, a probe for inorganic phosphate. Hirshberg M; Henrick K; Haire LL; Vasisht N; Brune M; Corrie JE; Webb MR Biochemistry; 1998 Jul; 37(29):10381-5. PubMed ID: 9671506 [TBL] [Abstract][Full Text] [Related]
9. Orthophosphate and the fastest component of the mechanical transient in skinned muscle fibers. Horiuti K; Sakoda T Biophys J; 1993 Nov; 65(5):2261-4. PubMed ID: 8298049 [No Abstract] [Full Text] [Related]
10. The role of three-state docking of myosin S1 with actin in force generation. Geeves MA; Conibear PB Biophys J; 1995 Apr; 68(4 Suppl):194S-199S; discussion 199S-201S. PubMed ID: 7787067 [TBL] [Abstract][Full Text] [Related]
11. The second step of ATP binding to DnaK induces peptide release. Theyssen H; Schuster HP; Packschies L; Bukau B; Reinstein J J Mol Biol; 1996 Nov; 263(5):657-70. PubMed ID: 8947566 [TBL] [Abstract][Full Text] [Related]
12. Indirect coupling of phosphate release to de novo tension generation during muscle contraction. Davis JS; Rodgers ME Proc Natl Acad Sci U S A; 1995 Nov; 92(23):10482-6. PubMed ID: 7479824 [TBL] [Abstract][Full Text] [Related]
13. Characterization of single actin-myosin interactions. Finer JT; Mehta AD; Spudich JA Biophys J; 1995 Apr; 68(4 Suppl):291S-296S; discussion 296S-297S. PubMed ID: 7787094 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of the phosphorylation of Na,K-ATPase by inorganic phosphate detected by a fluorescence method. Apell HJ; Roudna M; Corrie JE; Trentham DR Biochemistry; 1996 Aug; 35(33):10922-30. PubMed ID: 8718885 [TBL] [Abstract][Full Text] [Related]
15. A three-line muscle cross-bridge cycle with strain-dependent ligand releases. Smith D Biophys J; 1995 Apr; 68(4 Suppl):215S. PubMed ID: 7787071 [No Abstract] [Full Text] [Related]
17. Kinetic characterization of the ATPase cycle of the DnaK molecular chaperone. Russell R; Jordan R; McMacken R Biochemistry; 1998 Jan; 37(2):596-607. PubMed ID: 9425082 [TBL] [Abstract][Full Text] [Related]
18. Measurement of Nucleotide Hydrolysis Using Fluorescent Biosensors for Phosphate. Kunzelmann S Methods Mol Biol; 2021; 2263():289-318. PubMed ID: 33877604 [TBL] [Abstract][Full Text] [Related]
19. Continuous monitoring of Pi release following nucleotide hydrolysis in actin or tubulin assembly using 2-amino-6-mercapto-7-methylpurine ribonucleoside and purine-nucleoside phosphorylase as an enzyme-linked assay. Melki R; Fievez S; Carlier MF Biochemistry; 1996 Sep; 35(37):12038-45. PubMed ID: 8810908 [TBL] [Abstract][Full Text] [Related]
20. The role of nucleoside triphosphate hydrolysis in transducing systems: p21ras and muscle. Webb MR Philos Trans R Soc Lond B Biol Sci; 1992 Apr; 336(1276):19-24. PubMed ID: 1351291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]