These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 7787143)
1. Renal hemodynamics and plasma and kidney angiotensin II in established diabetes mellitus in rats: effect of sodium and salt restriction. Vallon V; Wead LM; Blantz RC J Am Soc Nephrol; 1995 Apr; 5(10):1761-7. PubMed ID: 7787143 [TBL] [Abstract][Full Text] [Related]
2. Effect of combining an ACE inhibitor and an angiotensin II receptor blocker on plasma and kidney tissue angiotensin II levels. Komine N; Khang S; Wead LM; Blantz RC; Gabbai FB Am J Kidney Dis; 2002 Jan; 39(1):159-64. PubMed ID: 11774115 [TBL] [Abstract][Full Text] [Related]
3. Effect of chronic salt loading on kidney function in early and established diabetes mellitus in rats. Vallon V; Kirschenmann D; Wead LM; Lortie MJ; Satriano J; Blantz RC; Thomson SC J Lab Clin Med; 1997 Jul; 130(1):76-82. PubMed ID: 9242369 [TBL] [Abstract][Full Text] [Related]
4. Effect of reduction of nitric oxide on plasma and kidney tissue angiotensin II levels. Garcia GE; Brown MR; Wead LM; Braun S; Gabbai FB Am J Hypertens; 1997 Oct; 10(10 Pt 1):1103-8. PubMed ID: 9370380 [TBL] [Abstract][Full Text] [Related]
5. Salt restriction reduces hyperfiltration, renal enlargement, and albuminuria in experimental diabetes. Allen TJ; Waldron MJ; Casley D; Jerums G; Cooper ME Diabetes; 1997 Jan; 46(1):19-24. PubMed ID: 8971091 [TBL] [Abstract][Full Text] [Related]
6. Role of nitric oxide and angiotensin II in diabetes mellitus-induced glomerular hyperfiltration. Mathis KM; Banks RO J Am Soc Nephrol; 1996 Jan; 7(1):105-12. PubMed ID: 8808116 [TBL] [Abstract][Full Text] [Related]
7. Effect of angiotensin II on the renal response to amino acid in rats. Garcia GE; Hammond TC; Wead LM; Mendonca MM; Brown MR; Gabbai FB Am J Kidney Dis; 1996 Jul; 28(1):115-23. PubMed ID: 8712205 [TBL] [Abstract][Full Text] [Related]
8. Limited capacity for renal vasodilatation in anesthetized diabetic rats. Ha H; Dunham EW Am J Physiol; 1987 Oct; 253(4 Pt 2):H845-55. PubMed ID: 3661732 [TBL] [Abstract][Full Text] [Related]
9. Acute effect of calcium blocker on renal hemodynamics in diabetic spontaneously hypertensive rat. Kaizu K; Ling QY; Uriu K; Ikeda M; Eto S J Diabetes Complications; 1995; 9(4):301-3. PubMed ID: 8573752 [TBL] [Abstract][Full Text] [Related]
10. Response of proximal tubules to angiotensin II changes during maturation. Garvin JL; Beierwaltes WH Hypertension; 1998 Jan; 31(1 Pt 2):415-20. PubMed ID: 9453338 [TBL] [Abstract][Full Text] [Related]
11. Control of renal hemodynamics and glomerular filtration rate in chronic hypercalcemia. Role of prostaglandins, renin-angiotensin system, and calcium. Levi M; Ellis MA; Berl T J Clin Invest; 1983 Jun; 71(6):1624-32. PubMed ID: 6345587 [TBL] [Abstract][Full Text] [Related]
12. The effect of altered sodium balance upon renal vascular reactivity to angiotensin II and norepinephrine in the dog. Mechanism of variation in angiotensin responses. Oliver JA; Cannon PJ J Clin Invest; 1978 Mar; 61(3):610-23. PubMed ID: 641142 [TBL] [Abstract][Full Text] [Related]
13. Role of Mas receptor antagonist (A779) in renal hemodynamics in condition of blocked angiotensin II receptors in rats. Mansoori A; Oryan S; Nematbakhsh M Physiol Int; 2016 Mar; 103(1):13-20. PubMed ID: 27030624 [TBL] [Abstract][Full Text] [Related]
14. Effect of KATP channel blocker U37883A on renal function in experimental diabetes mellitus in rats. Vallon V; Albinus M; Blach D J Pharmacol Exp Ther; 1998 Sep; 286(3):1215-21. PubMed ID: 9732381 [TBL] [Abstract][Full Text] [Related]
15. Influence of converting enzyme inhibition on renal hemodynamics and glomerular dynamics in sodium-restricted dogs. Navar LG; Jirakulsomchok D; Bell PD; Thomas CE; Huang WC Hypertension; 1982; 4(1):58-68. PubMed ID: 6174445 [TBL] [Abstract][Full Text] [Related]
16. Role of angiotensin II in L-NAME-induced systemic and renal hemodynamic effects in hydrochlorothiazide-pretreated hypertensive subjects. van der Linde NA; van den Meiracker AH; Boomsma F J Hypertens; 2003 Feb; 21(2):345-51. PubMed ID: 12569265 [TBL] [Abstract][Full Text] [Related]
17. Effects of subpressor doses of angiotensin II on renal hemodynamics in relation to blood pressure. Ljungman S; Aurell M; Hartford M; Wikstrand J; Berglund G Hypertension; 1983; 5(3):368-74. PubMed ID: 6341220 [TBL] [Abstract][Full Text] [Related]
18. Nitric oxide-angiotensin II interactions and renal hemodynamic function in patients with uncomplicated type 1 diabetes. Montanari A; Pelà G; Musiari L; Crocamo A; Boeti L; Cabassi A; Biggi A; Cherney DZ Am J Physiol Renal Physiol; 2013 Jul; 305(1):F42-51. PubMed ID: 23657857 [TBL] [Abstract][Full Text] [Related]
19. Nuclear factor erythroid 2-related factor 2 activation in streptozotocin-induced diabetic rats normalize renal hemodynamics and oxygen consumption. Persson P Ups J Med Sci; 2024; 129():. PubMed ID: 39114321 [TBL] [Abstract][Full Text] [Related]
20. Renal hemodynamic effects of captopril in anesthetized sodium-restricted dogs. Relative contributions of prostaglandin stimulation and suppressed angiotensin activity. Carmines PK; Rosivall L; Till MF; Navar LG Ren Physiol; 1983; 6(6):281-7. PubMed ID: 6359304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]