BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 778846)

  • 1. Ribosomal proteins of Escherichia coli that stimulate stringent-factor-mediated pyrophosphoryl transfer in vitro.
    Christiansen L; Neirhaus KH
    Proc Natl Acad Sci U S A; 1976 Jun; 73(6):1839-43. PubMed ID: 778846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new transfer RNA fragment reaction: Tp psi pCpGp bound to a ribosome-messenger RNA complex induces the synthesis of guanosine tetra- and pentaphosphates.
    Richter D; Erdmann VA; Sprinzl M
    Proc Natl Acad Sci U S A; 1974 Aug; 71(8):3226-9. PubMed ID: 4606128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonribosomal synthesis of guanosine 5',3'-polyphosphates by the ribosomal wash of stringent Escherichia coli.
    Sy J; Ogawa Y; Lipmann F
    Proc Natl Acad Sci U S A; 1973 Jul; 70(7):2145-8. PubMed ID: 4579015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eukaryotic ribosomal proteins stimulate Escherichia coli stringent factor to synthesize guanosine 5'-diphosphate, 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate, 3'-diphosphate (ppGpp).
    Martini O; Richter D
    Mol Gen Genet; 1978 Nov; 166(3):291-7. PubMed ID: 216901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ability of modified forms of phenylalanine tRNA to stimulate guanosine pentaphosphate synthesis by the stringent factor-ribosome complex of E. coli.
    Ofengand J; Liou R
    Nucleic Acids Res; 1978 Apr; 5(4):1325-34. PubMed ID: 349503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes.
    Haseltine WA; Block R
    Proc Natl Acad Sci U S A; 1973 May; 70(5):1564-8. PubMed ID: 4576025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the aminoacyl end of transfer RNA in the allosteric control of guanosine pentaphosphate synthesis by the stringent factor-ribosome complex of Escherichia coli.
    Chinali G; Liou R; Ofengand J
    Biochemistry; 1978 Jul; 17(14):2761-8. PubMed ID: 356874
    [No Abstract]   [Full Text] [Related]  

  • 8. Dissection of the mechanism for the stringent factor RelA.
    Wendrich TM; Blaha G; Wilson DN; Marahiel MA; Nierhaus KH
    Mol Cell; 2002 Oct; 10(4):779-88. PubMed ID: 12419222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of the stringent protein of Escherichia coli on the 50S ribosomal subunit.
    Ramagopal S; Davis BD
    Proc Natl Acad Sci U S A; 1974 Mar; 71(3):820-4. PubMed ID: 4595574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free 3'-OH group of the terminal adenosine of the tRNA molecule is essential for the synthesis in vitro of guanosine tetraphosphate and pentaphosphate in a ribosomal system from Escherichia coli.
    Sprinzl M; Richter D
    Eur J Biochem; 1976 Dec; 71(1):171-6. PubMed ID: 795660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stringent response of Bacillus stearothermophilus: evidence for the existence of two distinct guanosine 3',5'-polyphosphate synthetases.
    Fehr S; Richter D
    J Bacteriol; 1981 Jan; 145(1):68-73. PubMed ID: 6161916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribosomal synthesis of guanosine tetra- and pentaphosphate with mRNAs of different chain length.
    Giesen M; Erdmann VA
    FEBS Lett; 1977 Nov; 83(1):125-7. PubMed ID: 336399
    [No Abstract]   [Full Text] [Related]  

  • 13. Stringent factor from Escherichia coli directs ribosomal binding and release of uncharged tRNA.
    Richter D
    Proc Natl Acad Sci U S A; 1976 Mar; 73(3):707-11. PubMed ID: 768983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylgroups of ribosomal protein L11 are not related to the synthesis of ppGpp.
    Röhl R; Nierhaus KH
    Mol Gen Genet; 1979 Feb; 170(2):187-9. PubMed ID: 372761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered specificity of synthesis of guanosine tetraphosphate (ppGpp) and pentaphosphate (ppGpp) by salt-washed ribosomes.
    Ramagopal S
    Biochem Biophys Res Commun; 1974 May; 58(1):268-71. PubMed ID: 4598443
    [No Abstract]   [Full Text] [Related]  

  • 16. The stimulation of Escherichia coli stringent factor-dependent synthesis of guanosine 3',5'-polyphosphate [(p)ppGpp] by rat liver ribosomal proteins.
    Fehr S; Lin A; Wool IG; Richter D
    Mol Gen Genet; 1979 Nov; 176(3):375-7. PubMed ID: 230408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the tRNA and ribosome-dependent pppGpp-synthesis by recombinant stringent factor from Escherichia coli.
    Knutsson Jenvert RM; Holmberg Schiavone L
    FEBS J; 2005 Feb; 272(3):685-95. PubMed ID: 15670150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The flexible N-terminal domain of ribosomal protein L11 from Escherichia coli is necessary for the activation of stringent factor.
    Jenvert RM; Schiavone LH
    J Mol Biol; 2007 Jan; 365(3):764-72. PubMed ID: 17095013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and properties of stringent factor.
    Block R; Haseltine AW
    J Biol Chem; 1975 Feb; 250(4):1212-7. PubMed ID: 163249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of stable RNA in stringent Escherichia coli cells in the absence of charged transfer RNA.
    Kaplan S; Atherly AG; Barrett A
    Proc Natl Acad Sci U S A; 1973 Mar; 70(3):689-92. PubMed ID: 4577134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.