BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 7789277)

  • 21. The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development.
    Tang TL; Freeman RM; O'Reilly AM; Neel BG; Sokol SY
    Cell; 1995 Feb; 80(3):473-83. PubMed ID: 7859288
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interference with brachyury function inhibits convergent extension, causes apoptosis, and reveals separate requirements in the FGF and activin signalling pathways.
    Conlon FL; Smith JC
    Dev Biol; 1999 Sep; 213(1):85-100. PubMed ID: 10452848
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Spemann organizer-expressed zinc finger gene Xegr-1 responds to the MAP kinase/Ets-SRF signal transduction pathway.
    Panitz F; Krain B; Hollemann T; Nordheim A; Pieler T
    EMBO J; 1998 Aug; 17(15):4414-25. PubMed ID: 9687509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel homeobox gene PV.1 mediates induction of ventral mesoderm in Xenopus embryos.
    Ault KT; Dirksen ML; Jamrich M
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6415-20. PubMed ID: 8692829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AP-1/jun is required for early Xenopus development and mediates mesoderm induction by fibroblast growth factor but not by activin.
    Dong Z; Xu RH; Kim J; Zhan SN; Ma WY; Colburn NH; Kung H
    J Biol Chem; 1996 Apr; 271(17):9942-6. PubMed ID: 8626631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Induction of dorsal mesoderm by soluble, mature Vg1 protein.
    Kessler DS; Melton DA
    Development; 1995 Jul; 121(7):2155-64. PubMed ID: 7635059
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mesoderm induction by heterodimeric AP-1 (c-Jun and c-Fos) and its involvement in mesoderm formation through the embryonic fibroblast growth factor/Xbra autocatalytic loop during the early development of Xenopus embryos.
    Kim J; Lin JJ; Xu RH; Kung HF
    J Biol Chem; 1998 Jan; 273(3):1542-50. PubMed ID: 9430694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Regionalization of the expression of tenascin as a response to the inducers of mesoderm].
    Umbhauer M; Riou JF; Boucaut JC
    C R Seances Soc Biol Fil; 1993; 187(3):341-55. PubMed ID: 7517335
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proline365 is a critical residue for the activity of XMI-ER1 in Xenopus embryonic development.
    Teplitsky Y; Paterno GD; Gillespie LL
    Biochem Biophys Res Commun; 2003 Sep; 308(4):679-83. PubMed ID: 12927772
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Essential role of the transcription factor Ets-2 in Xenopus early development.
    Kawachi K; Masuyama N; Nishida E
    J Biol Chem; 2003 Feb; 278(7):5473-7. PubMed ID: 12468533
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The ALK-2 and ALK-4 activin receptors transduce distinct mesoderm-inducing signals during early Xenopus development but do not co-operate to establish thresholds.
    Armes NA; Smith JC
    Development; 1997 Oct; 124(19):3797-804. PubMed ID: 9367435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Induction of the mesendoderm in the zebrafish germ ring by yolk cell-derived TGF-beta family signals and discrimination of mesoderm and endoderm by FGF.
    Rodaway A; Takeda H; Koshida S; Broadbent J; Price B; Smith JC; Patient R; Holder N
    Development; 1999 Jun; 126(14):3067-78. PubMed ID: 10375499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of cell differentiation and morphogenesis in amphibian development.
    Fukui A; Asashima M
    Int J Dev Biol; 1994 Jun; 38(2):257-66. PubMed ID: 7981034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development.
    Dale L; Howes G; Price BM; Smith JC
    Development; 1992 Jun; 115(2):573-85. PubMed ID: 1425340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. BMP-4 regulates the dorsal-ventral differences in FGF/MAPKK-mediated mesoderm induction in Xenopus.
    Northrop J; Woods A; Seger R; Suzuki A; Ueno N; Krebs E; Kimelman D
    Dev Biol; 1995 Nov; 172(1):242-52. PubMed ID: 7589804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning.
    Nutt SL; Dingwell KS; Holt CE; Amaya E
    Genes Dev; 2001 May; 15(9):1152-66. PubMed ID: 11331610
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Involvement of Ras/Raf/AP-1 in BMP-4 signaling during Xenopus embryonic development.
    Xu RH; Dong Z; Maeno M; Kim J; Suzuki A; Ueno N; Sredni D; Colburn NH; Kung HF
    Proc Natl Acad Sci U S A; 1996 Jan; 93(2):834-8. PubMed ID: 8570644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MEK-2, a Caenorhabditis elegans MAP kinase kinase, functions in Ras-mediated vulval induction and other developmental events.
    Wu Y; Han M; Guan KL
    Genes Dev; 1995 Mar; 9(6):742-55. PubMed ID: 7729690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of competence and of Brachyury autoinduction by use of hormone-inducible Xbra.
    Tada M; O'Reilly MA; Smith JC
    Development; 1997 Jun; 124(11):2225-34. PubMed ID: 9187148
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HNF1(beta) is required for mesoderm induction in the Xenopus embryo.
    Vignali R; Poggi L; Madeddu F; Barsacchi G
    Development; 2000 Apr; 127(7):1455-65. PubMed ID: 10704391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.