These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 778941)
1. The nucleated erythrocyte: a model of cell differentiation. Sinclair GD; Brasch K Rev Can Biol; 1975 Dec; 34(4):287-303. PubMed ID: 778941 [TBL] [Abstract][Full Text] [Related]
2. [Pathways of terminal erythrocyte differentiation in birds. An analysis of the intermediate forms]. Kul'minskaia AS; Gazarian KG Ontogenez; 1976; 7(6):590-7. PubMed ID: 1028009 [TBL] [Abstract][Full Text] [Related]
3. A novel nonhistone protein (MENT) promotes nuclear collapse at the terminal stage of avian erythropoiesis. Grigoryev SA; Solovieva VO; Spirin KS; Krasheninnikov IA Exp Cell Res; 1992 Feb; 198(2):268-75. PubMed ID: 1729133 [TBL] [Abstract][Full Text] [Related]
4. The RNA in reticulocytes is not just debris: it is necessary for the final stages of erythrocyte formation. Lee E; Choi HS; Hwang JH; Hoh JK; Cho YH; Baek EJ Blood Cells Mol Dis; 2014; 53(1-2):1-10. PubMed ID: 24594313 [TBL] [Abstract][Full Text] [Related]
5. The critical role of the nucleolus in cell differentiation and stem cell development - the concept as it applies to erythropoiesis. Med Hypotheses; 1980 Dec; 6(12):1275-88. PubMed ID: 7219233 [TBL] [Abstract][Full Text] [Related]
6. Changes in heat shock protein synthesis and hsp70 gene transcription during erythropoiesis of Xenopus laevis. Winning RS; Browder LW Dev Biol; 1988 Jul; 128(1):111-20. PubMed ID: 2454851 [TBL] [Abstract][Full Text] [Related]
7. [Erythrocyte structure and differentiation]. Partanen S; Jansson SE Duodecim; 1981; 97(7):385-93. PubMed ID: 7274112 [No Abstract] [Full Text] [Related]
8. Influence of histone H5 on mononucleosome structure during differentiation in the avian erythroid series. Haye KR; Schlegel RA Exp Cell Res; 1985 Apr; 157(2):504-10. PubMed ID: 3979447 [TBL] [Abstract][Full Text] [Related]
9. Correlation of chromatin composition with metabolic changes in nuclei of primitive erythroid cells from chicken embryos. Urban MK; Neelin JM; Betz TW Can J Biochem; 1980 Sep; 58(9):726-31. PubMed ID: 6161682 [TBL] [Abstract][Full Text] [Related]
10. Understanding terminal erythropoiesis: An update on chromatin condensation, enucleation, and reticulocyte maturation. Mei Y; Liu Y; Ji P Blood Rev; 2021 Mar; 46():100740. PubMed ID: 32798012 [TBL] [Abstract][Full Text] [Related]
11. Stage-specific expression and localization of MENT, a nuclear protein associated with chromatin condensation in terminally differentiating avian erythroid cells. Grigoryev SA; Woodcock CL Exp Cell Res; 1993 Jun; 206(2):335-43. PubMed ID: 8500553 [TBL] [Abstract][Full Text] [Related]
12. [DNA synthesis and content and the accumulation of total protein and hemoglobin during the differentiation of primary erythroid cells in chickens]. Karalova EM; Gazarian KG; Magakian IuA Tsitologiia; 1985 Jun; 27(6):663-9. PubMed ID: 4024259 [TBL] [Abstract][Full Text] [Related]
13. [Process of production and destruction of red blood cells and etiological classification of anemia]. Miura Y Nihon Naika Gakkai Zasshi; 1990 May; 79(5):557-61. PubMed ID: 2380599 [No Abstract] [Full Text] [Related]
14. Time of the erythrocyte-specific histone fraction F2c synthesis during erythropoiesis in birds. Medvedev ZhA; Kirpicheva ND Mol Biol; 1972; 6(4):488-93. PubMed ID: 4659310 [No Abstract] [Full Text] [Related]
15. Synthesis of nuclear acidic proteins in mature and immature avian erythrocytes. Jeter JR; Knieriem KM; Cameron IL Cytobios; 1976; 15(60):183-9. PubMed ID: 1017314 [TBL] [Abstract][Full Text] [Related]
16. Phosphorylation and dephosphorylation of histone (V (H5): controlled condensation of avian erythrocyte chromatin. Appendix: Phosphorylation and dephosphorylation of histone H5. II. Circular dichroic studies. Wagner TE; Hartford JB; Serra M; Vandegrift V; Sung MT Biochemistry; 1977 Jan; 16(2):286-90. PubMed ID: 836789 [TBL] [Abstract][Full Text] [Related]
17. [Mechanism of genome inactivation in avian erythrocytes. IV. New data on the mechanisms of cytodifferentiation in erythropoiesis]. Kul'minskaia AS; Brodskiĭ VIa; Gazarian KG Ontogenez; 1978; 9(6):601-8. PubMed ID: 724205 [TBL] [Abstract][Full Text] [Related]
18. Differentiation-associated switches in protein 4.1 expression. Synthesis of multiple structural isoforms during normal human erythropoiesis. Chasis JA; Coulombel L; Conboy J; McGee S; Andrews K; Kan YW; Mohandas N J Clin Invest; 1993 Jan; 91(1):329-38. PubMed ID: 8423229 [TBL] [Abstract][Full Text] [Related]
19. Modulation of the expression and activity of cyclooxygenases in normal and accelerated erythropoiesis. Rocca B; Secchiero P; Celeghini C; Ranelletti FO; Ciabattoni G; Maggiano N; Habib A; Ricerca BM; Barbarotto E; Patrono C; Zauli G Exp Hematol; 2004 Oct; 32(10):925-34. PubMed ID: 15504548 [TBL] [Abstract][Full Text] [Related]
20. Erythropoiesis and red cell function in vertebrate embryos. Baumann R; Dragon S Eur J Clin Invest; 2005 Dec; 35 Suppl 3():2-12. PubMed ID: 16281952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]