These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 778941)

  • 41. Erythropoiesis in the duck embryo: accumulation of H5 histone during red blood cell maturation.
    Enea L; Gottesman SS; Vidali G
    Mech Ageing Dev; 1978 Feb; 7(2):97-108. PubMed ID: 340809
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Molecular basis for differentiation of erythroid cells and regulation of the biosynthesis of individual types of hemoglobin].
    Starodub NF
    Usp Sovrem Biol; 1980; 89(1):124-40. PubMed ID: 6994385
    [No Abstract]   [Full Text] [Related]  

  • 43. Aminolevulinate synthase 2 mediates erythrocyte differentiation by regulating larval globin expression during Xenopus primary hematopoiesis.
    Ogawa-Otomo A; Kurisaki A; Ito Y
    Biochem Biophys Res Commun; 2015 Jan; 456(1):476-81. PubMed ID: 25482442
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Differentiation pathways of primary erythroid cells in chickens].
    Karalova EM; Korvin-Pavlovskaia EG; Gazarian KG; Magakian IuA
    Tsitologiia; 1985 Jun; 27(6):656-62. PubMed ID: 4024258
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [The red blood cells in growing guinea pigs. (Cavia cobaya). II. Communication: erythropoiesis and red blood cells in the postnatal development period].
    Schwartze H; Michael B; Meyer C; Voigt J
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1986; 113(3):398-414. PubMed ID: 2428715
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells.
    Giarratana MC; Kobari L; Lapillonne H; Chalmers D; Kiger L; Cynober T; Marden MC; Wajcman H; Douay L
    Nat Biotechnol; 2005 Jan; 23(1):69-74. PubMed ID: 15619619
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biochemical characterization of RNA and protein synthesis in erythrocyte development.
    Grasso JA; Chromey NC; Moxey CF
    J Cell Biol; 1977 Apr; 73(1):206-22. PubMed ID: 856832
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Existence of differences in repressor properties between serine-rich histones (H5, F2c) from immature and mature pigeon erythroid cells.
    Gasaryan KG; Andreeva NB; Vishnevskaya TY
    Differentiation; 1978 Mar; 10(2):123-7. PubMed ID: 640304
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of pre-natal haemopoiesis: evidence for negative feedback control of erythropoiesis in the foetal mouse.
    Cole RJ; Regan T
    J Embryol Exp Morphol; 1977 Feb; 37(1):237-49. PubMed ID: 870594
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of nitric oxide on red blood cell development and phenotype.
    Cokić VP; Schechter AN
    Curr Top Dev Biol; 2008; 82():169-215. PubMed ID: 18282521
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Revisiting the question of nucleated versus enucleated erythrocytes in birds and mammals.
    Yap KN; Zhang Y
    Am J Physiol Regul Integr Comp Physiol; 2021 Oct; 321(4):R547-R557. PubMed ID: 34378417
    [TBL] [Abstract][Full Text] [Related]  

  • 52. From stem cells to red blood cells: how far away from the clinical application?
    Xie X; Li Y; Pei X
    Sci China Life Sci; 2014 Jun; 57(6):581-5. PubMed ID: 24829108
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of hemoglobin synthesis during the development of the red cell (third of three parts).
    Nienhuis AW; Benz EJ
    N Engl J Med; 1977 Dec; 297(26):1430-6. PubMed ID: 337141
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comparative study of histone acetylation, histone deacetylation, and ribonucleic acid synthesis in avian reticulocytes and erythrocytes.
    Sanders LA; Schechter NM; McCarty KS
    Biochemistry; 1973 Feb; 12(5):783-91. PubMed ID: 4568767
    [No Abstract]   [Full Text] [Related]  

  • 55. Decline in histone H5 phosphorylation during erythroid senescence in chick embryos.
    Pikaart M; Irving J; Villeponteau B
    Mech Ageing Dev; 1991 Jun; 59(1-2):189-95. PubMed ID: 1890882
    [TBL] [Abstract][Full Text] [Related]  

  • 56. From stem cell to red blood cells in vitro: "the 12 labors of Hercules".
    Douay L
    Clin Lab Med; 2010 Jun; 30(2):391-403. PubMed ID: 20513558
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Immunofluorescent study of histone H5 in chick erythroid cells from developing embryos and adults.
    Mura C; Huang PC; Craig SW
    Mech Ageing Dev; 1978 Feb; 7(2):109-22. PubMed ID: 340808
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nucleic acid distribution pattern in avian erythrocytes and mammalian lymphocytes: comparative studies by fluorescence microscopy and digital imaging analytical techniques.
    Isitor GN; Asgarali Z; Pouching K
    Res Vet Sci; 2008 Dec; 85(3):418-32. PubMed ID: 18448142
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Erythroid enucleation: a gateway into a "bloody" world.
    Menon V; Ghaffari S
    Exp Hematol; 2021 Mar; 95():13-22. PubMed ID: 33440185
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Uncoupled synthesis of H1o-like histone H1s during late erythropoiesis in Xenopus laevis.
    Rutledge RG; Neelin JM; Seligy VL
    Eur J Biochem; 1984 Oct; 144(1):191-8. PubMed ID: 6434311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.