BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 7789450)

  • 1. The relationship between control, kinematic and electromyographic variables in fast single-joint movements in humans.
    Feldman AG; Adamovich SV; Levin MF
    Exp Brain Res; 1995; 103(3):440-50. PubMed ID: 7789450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-trial adaptation of movement to changes in load.
    Weeks DL; Aubert MP; Feldman AG; Levin MF
    J Neurophysiol; 1996 Jan; 75(1):60-74. PubMed ID: 8822542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central modifications of reflex parameters may underlie the fastest arm movements.
    Adamovich SV; Levin MF; Feldman AG
    J Neurophysiol; 1997 Mar; 77(3):1460-9. PubMed ID: 9084611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms.
    Gottlieb GL
    J Neurophysiol; 1996 Nov; 76(5):3207-29. PubMed ID: 8930267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control variables and proprioceptive feedback in fast single-joint movement.
    Levin MF; Lamarre Y; Feldman AG
    Can J Physiol Pharmacol; 1995 Feb; 73(2):316-30. PubMed ID: 7621370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The patterns of control signals underlying elbow joint movements in humans.
    St-Onge N; Qi H; Feldman AG
    Neurosci Lett; 1993 Dec; 164(1-2):171-4. PubMed ID: 8152596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromyographic responses to constant position errors imposed during voluntary elbow joint movement in human.
    Bennett DJ
    Exp Brain Res; 1993; 95(3):499-508. PubMed ID: 8224076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of fast elbow movement: a study of electromyographic patterns during movements against unexpectedly decreased inertial load.
    Latash ML
    Exp Brain Res; 1994; 98(1):145-52. PubMed ID: 8013582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of single-joint movements with a reversal.
    Paulino RG; Rezende Dos Santos MV; Latash ML; Almeida GL
    J Electromyogr Kinesiol; 2005 Aug; 15(4):406-17. PubMed ID: 15811611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordinating two degrees of freedom during human arm movement: load and speed invariance of relative joint torques.
    Gottlieb GL; Song Q; Hong DA; Corcos DM
    J Neurophysiol; 1996 Nov; 76(5):3196-206. PubMed ID: 8930266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organizing principles for single-joint movements. I. A speed-insensitive strategy.
    Gottlieb GL; Corcos DM; Agarwal GC
    J Neurophysiol; 1989 Aug; 62(2):342-57. PubMed ID: 2769334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compensation for interaction torques during single- and multijoint limb movement.
    Gribble PL; Ostry DJ
    J Neurophysiol; 1999 Nov; 82(5):2310-26. PubMed ID: 10561408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organizing principles for voluntary movement: extending single-joint rules.
    Almeida GL; Hong DA; Corcos D; Gottlieb GL
    J Neurophysiol; 1995 Oct; 74(4):1374-81. PubMed ID: 8989378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Movement-related and steady-state electromyographic activity of human elbow flexors in slow transition movements between two equilibrium states.
    Tal'nov AN; Cherkassky VL; Kostyukov AI
    Neuroscience; 1997 Aug; 79(3):923-33. PubMed ID: 9219955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-joint rapid arm movements in normal subjects and in patients with motor disorders.
    Berardelli A; Hallett M; Rothwell JC; Agostino R; Manfredi M; Thompson PD; Marsden CD
    Brain; 1996 Apr; 119 ( Pt 2)():661-74. PubMed ID: 8800955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromyographic responses to a mechanical perturbation applied during impending arm movements in different directions: one-joint and two-joint conditions.
    Koshland GF; Hasan Z
    Exp Brain Res; 2000 Jun; 132(4):485-99. PubMed ID: 10912829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deficits in the coordination of agonist and antagonist muscles in stroke patients: implications for normal motor control.
    Levin MF; Selles RW; Verheul MH; Meijer OG
    Brain Res; 2000 Jan; 853(2):352-69. PubMed ID: 10640634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle activation patterns during two types of voluntary single-joint movement.
    Gottlieb GL
    J Neurophysiol; 1998 Oct; 80(4):1860-7. PubMed ID: 9772245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.