BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 7789518)

  • 1. Interaction of urea with an unfolded protein. The DNA-binding domain of the 434-repressor.
    Dötsch V; Wider G; Siegal G; Wüthrich K
    FEBS Lett; 1995 Jun; 366(1):6-10. PubMed ID: 7789518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1H, 15N and 13C NMR assignments of the 434 repressor fragments 1-63 and 44-63 unfolded in 7 M urea.
    Neri D; Wider G; Wüthrich K
    FEBS Lett; 1992 Jun; 303(2-3):129-35. PubMed ID: 1607010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt-stabilized globular protein structure in 7 M aqueous urea solution.
    Dötsch V; Wider G; Siegal G; Wüthrich K
    FEBS Lett; 1995 Sep; 372(2-3):288-90. PubMed ID: 7556686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR structures of salt-refolded forms of the 434-repressor DNA-binding domain in 6 M urea.
    Pervushin K; Wider G; Iwai H; Wüthrich K
    Biochemistry; 2004 Nov; 43(44):13937-43. PubMed ID: 15518542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete 15N and 1H NMR assignments for the amino-terminal domain of the phage 434 repressor in the urea-unfolded form.
    Neri D; Wider G; Wüthrich K
    Proc Natl Acad Sci U S A; 1992 May; 89(10):4397-401. PubMed ID: 1584772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and stability of monomeric lambda repressor: NMR evidence for two-state folding.
    Huang GS; Oas TG
    Biochemistry; 1995 Mar; 34(12):3884-92. PubMed ID: 7696251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR determination of residual structure in a urea-denatured protein, the 434-repressor.
    Neri D; Billeter M; Wider G; Wüthrich K
    Science; 1992 Sep; 257(5076):1559-63. PubMed ID: 1523410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes.
    Felitsky DJ; Record MT
    Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure of dimeric Mnt repressor (1-76).
    Burgering MJ; Boelens R; Gilbert DE; Breg JN; Knight KL; Sauer RT; Kaptein R
    Biochemistry; 1994 Dec; 33(50):15036-45. PubMed ID: 7999761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the nuclear magnetic resonance structure of the DNA-binding domain of the P22 c2 repressor (1 to 76) in solution and comparison with the DNA-binding domain of the 434 repressor.
    Sevilla-Sierra P; Otting G; Wüthrich K
    J Mol Biol; 1994 Jan; 235(3):1003-20. PubMed ID: 8289306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combinations of the alpha-helix-turn-alpha-helix motif of TetR with respective residues from LacI or 434Cro: DNA recognition, inducer binding, and urea-dependent denaturation.
    Backes H; Berens C; Helbl V; Walter S; Schmid FX; Hillen W
    Biochemistry; 1997 May; 36(18):5311-22. PubMed ID: 9154913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding propensities of synthetic peptide fragments covering the entire sequence of phage 434 Cro protein.
    Padmanabhan S; Jiménez MA; Rico M
    Protein Sci; 1999 Aug; 8(8):1675-88. PubMed ID: 10452612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear magnetic resonance solution structure of the Arc repressor using relaxation matrix calculations.
    Bonvin AM; Vis H; Breg JN; Burgering MJ; Boelens R; Kaptein R
    J Mol Biol; 1994 Feb; 236(1):328-41. PubMed ID: 8107113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid estimation of relative amide proton exchange rates of 15 N-labelled proteins by a straightforward water selective NOESY-HSQC experiment.
    Böckmann A; Penin F; Guittet E
    FEBS Lett; 1996 Apr; 383(3):191-5. PubMed ID: 8925894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonrandom structure in the urea-unfolded Escherichia coli outer membrane protein X (OmpX).
    Tafer H; Hiller S; Hilty C; Fernández C; Wüthrich K
    Biochemistry; 2004 Feb; 43(4):860-9. PubMed ID: 14744128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of urea and glycine betaine to quantify coupled folding and probe the burial of DNA phosphates in lac repressor-lac operator binding.
    Hong J; Capp MW; Saecker RM; Record MT
    Biochemistry; 2005 Dec; 44(51):16896-911. PubMed ID: 16363803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assignment of the 1H-NMR spectrum of a lac repressor headpiece-operator complex in H2O and identification of NOEs. Consequences for protein-DNA interaction.
    Lamerichs RM; Boelens R; Van der Marel GA; Van Boom JH; Kaptein R
    Eur J Biochem; 1990 Dec; 194(2):629-37. PubMed ID: 2269288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein hydration in aqueous solution.
    Wüthrich K; Otting G; Liepinsh E
    Faraday Discuss; 1992; (93):35-45. PubMed ID: 1283962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping hydration water molecules in the HIV-1 protease/DMP323 complex in solution by NMR spectroscopy.
    Wang YX; Freedberg DI; Grzesiek S; Torchia DA; Wingfield PT; Kaufman JD; Stahl SJ; Chang CH; Hodge CN
    Biochemistry; 1996 Oct; 35(39):12694-704. PubMed ID: 8841113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water molecules in DNA recognition II: a molecular dynamics view of the structure and hydration of the trp operator.
    Bonvin AM; Sunnerhagen M; Otting G; van Gunsteren WF
    J Mol Biol; 1998 Oct; 282(4):859-73. PubMed ID: 9743632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.