BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 7789518)

  • 21. Water molecules in DNA recognition I: hydration lifetimes of trp operator DNA in solution measured by NMR spectroscopy.
    Sunnerhagen M; Denisov VP; Venu K; Bonvin AM; Carey J; Halle B; Otting G
    J Mol Biol; 1998 Oct; 282(4):847-58. PubMed ID: 9743631
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conformational changes of purine repressor DNA-binding domain upon complexation with DNA.
    Nagadoi A; Nakazawa K; Morikawa S; Nakamura H; Sampei G; Mizobuchi K; Yamamoto H; Schumacher MA; Brennan RG; Nishimura Y
    Nucleic Acids Symp Ser; 1995; (34):63-4. PubMed ID: 8841553
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NMR structure and functional studies of the Mu repressor DNA-binding domain.
    Ilangovan U; Wojciak JM; Connolly KM; Clubb RT
    Biochemistry; 1999 Jun; 38(26):8367-76. PubMed ID: 10387082
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isotope-detected 1H NMR studies of proteins: a general strategy for editing interproton nuclear Overhauser effects by heteronuclear decoupling, with application to phage lambda repressor.
    Weiss MA; Redfield AG; Griffey RH
    Proc Natl Acad Sci U S A; 1986 Mar; 83(5):1325-9. PubMed ID: 3006046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water and urea interactions with the native and unfolded forms of a beta-barrel protein.
    Modig K; Kurian E; Prendergast FG; Halle B
    Protein Sci; 2003 Dec; 12(12):2768-81. PubMed ID: 14627737
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Folding kinetics of a fluorescent variant of monomeric lambda repressor.
    Ghaemmaghami S; Word JM; Burton RE; Richardson JS; Oas TG
    Biochemistry; 1998 Jun; 37(25):9179-85. PubMed ID: 9636065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA-mediated assembly of weakly interacting DNA-binding protein subunits: in vitro recruitment of phage 434 repressor and yeast GCN4 DNA-binding domains.
    Guarnaccia C; Raman B; Zahariev S; Simoncsits A; Pongor S
    Nucleic Acids Res; 2004; 32(17):4992-5002. PubMed ID: 15388801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NMR observation of individual molecules of hydration water bound to DNA duplexes: direct evidence for a spine of hydration water present in aqueous solution.
    Liepinsh E; Otting G; Wüthrich K
    Nucleic Acids Res; 1992 Dec; 20(24):6549-53. PubMed ID: 1480475
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Submillisecond folding of monomeric lambda repressor.
    Huang GS; Oas TG
    Proc Natl Acad Sci U S A; 1995 Jul; 92(15):6878-82. PubMed ID: 7624336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carboxyl-terminal domain dimer interface mutant 434 repressors have altered dimerization and DNA binding specificities.
    Donner AL; Paa K; Koudelka GB
    J Mol Biol; 1998 Nov; 283(5):931-46. PubMed ID: 9799634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NMR and molecular dynamics studies of the hydration of a zinc finger-DNA complex.
    Tsui V; Radhakrishnan I; Wright PE; Case DA
    J Mol Biol; 2000 Oct; 302(5):1101-17. PubMed ID: 11183777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Equilibrium unfolding of dimeric and engineered monomeric forms of lambda Cro (F58W) repressor and the effect of added salts: evidence for the formation of folded monomer induced by sodium perchlorate.
    Maity H; Mossing MC; Eftink MR
    Arch Biochem Biophys; 2005 Feb; 434(1):93-107. PubMed ID: 15629113
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Urea and thermal equilibrium denaturation studies on the dimerization domain of Escherichia coli Trp repressor.
    Gloss LM; Matthews CR
    Biochemistry; 1997 May; 36(19):5612-23. PubMed ID: 9153401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Observation of inter-subunit nuclear Overhauser effects in a dimeric protein. Application to the Arc repressor.
    Burgering MJ; Boelens R; Caffrey M; Breg JN; Kaptein R
    FEBS Lett; 1993 Sep; 330(1):105-9. PubMed ID: 8370451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The solution structures of Escherichia coli trp repressor and trp aporepressor at an intermediate resolution.
    Arrowsmith C; Pachter R; Altman R; Jardetzky O
    Eur J Biochem; 1991 Nov; 202(1):53-66. PubMed ID: 1935980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Papain does not cleave operator-bound lambda repressor: structural characterization of the carboxy terminal domain and the hinge.
    Ghosh K; Chattopadhyaya R
    J Biomol Struct Dyn; 2001 Feb; 18(4):557-67. PubMed ID: 11245251
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA sequence dependent and independent conformational changes in multipartite operator recognition by lambda-repressor.
    Deb S; Bandyopadhyay S; Roy S
    Biochemistry; 2000 Mar; 39(12):3377-83. PubMed ID: 10727231
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The interactions of Escherichia coli trp repressor with tryptophan and with an operator oligonucleotide. NMR studies using selectively 15N-labelled protein.
    Ramesh V; Frederick RO; Syed SE; Gibson CF; Yang JC; Roberts GC
    Eur J Biochem; 1994 Oct; 225(2):601-8. PubMed ID: 7957174
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrostatic screening and backbone preferences of amino acid residues in urea-denatured ubiquitin.
    Avbelj F; Grdadolnik SG
    Protein Sci; 2007 Feb; 16(2):273-84. PubMed ID: 17242431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-pressure NMR study of the dissociation of Arc repressor.
    Peng X; Jonas J; Silva JL
    Biochemistry; 1994 Jul; 33(27):8323-9. PubMed ID: 8031765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.