These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 7789772)

  • 1. Alternative models for allozyme-associated heterosis in the marine bivalve Spisula ovalis.
    David P; Delay B; Berthou P; Jarne P
    Genetics; 1995 Apr; 139(4):1719-26. PubMed ID: 7789772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allozyme and RFLP heterozygosities as correlates of growth rate in the scallop Placopecten magellanicus: a test of the associative overdominance hypothesis.
    Pogson GH; Zouros E
    Genetics; 1994 May; 137(1):221-31. PubMed ID: 7914502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Context-dependent survival differences among electrophoretic genotypes in natural populations of the marine bivalve Spisula ovalis.
    David P; Jarne P
    Genetics; 1997 May; 146(1):335-44. PubMed ID: 9136022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterozygosity-fitness correlations in rainbow trout: effects of allozyme loci or associative overdominance?
    Thelen GC; Allendorf FW
    Evolution; 2001 Jun; 55(6):1180-7. PubMed ID: 11475053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontogenetic change in relative performance of allozyme genotypes influences detection of heterosis in the earthworm Eisenia andrei.
    McElroy TC; Diehl WJ
    Heredity (Edinb); 2005 Feb; 94(2):258-63. PubMed ID: 15523505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterosis in two closely related species of earthworm (Eisenia fetida and E. andrei).
    McElroy TC; Diehl WJ
    Heredity (Edinb); 2001 Nov; 87(Pt 5):598-608. PubMed ID: 11869351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The differential contribution by individual enzymes of glycolysis and protein catabolism to the relationship between heterozygosity and growth rate in the coot clam, Mulinia lateralis.
    Koehn RK; Diehl WJ; Scott TM
    Genetics; 1988 Jan; 118(1):121-30. PubMed ID: 8608921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the correlation between heterozygosity and fitness in natural populations.
    Hansson B; Westerberg L
    Mol Ecol; 2002 Dec; 11(12):2467-74. PubMed ID: 12453232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid.
    Hua J; Xing Y; Wu W; Xu C; Sun X; Yu S; Zhang Q
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2574-9. PubMed ID: 12604771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quantitative model of the relationship between phenotypic variance and heterozygosity at marker loci under partial selfing.
    David P
    Genetics; 1999 Nov; 153(3):1463-74. PubMed ID: 10545474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling heterotic effects in beef cattle using genome-wide SNP-marker genotypes.
    Akanno EC; Abo-Ismail MK; Chen L; Crowley JJ; Wang Z; Li C; Basarab JA; MacNeil MD; Plastow GS
    J Anim Sci; 2018 Apr; 96(3):830-845. PubMed ID: 29373745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical analyses of inbreds and their heterotic hybrids in maize.
    Tsaftaris AS
    Prog Clin Biol Res; 1990; 344():639-64. PubMed ID: 2203058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components.
    Luo LJ; Li ZK; Mei HW; Shu QY; Tabien R; Zhong DB; Ying CS; Stansel JW; Khush GS; Paterson AH
    Genetics; 2001 Aug; 158(4):1755-71. PubMed ID: 11514460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interrelationships of heterozygosity, growth rate and heterozygote deficiencies in the coot clam, Mulinia lateralis.
    Gaffney PM; Scott TM; Koehn RK; Diehl WJ
    Genetics; 1990 Mar; 124(3):687-99. PubMed ID: 2311919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines.
    Frascaroli E; Canè MA; Landi P; Pea G; Gianfranceschi L; Villa M; Morgante M; Pè ME
    Genetics; 2007 May; 176(1):625-44. PubMed ID: 17339211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allozyme-associated heterosis in Drosophila melanogaster.
    Houle D
    Genetics; 1989 Dec; 123(4):789-801. PubMed ID: 2482224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein metabolism, the costs of growth, and genomic heterozygosity: experiments with the mussel Mytilus galloprovincialis Lmk.
    Bayne BL; Hawkins AJ
    Physiol Zool; 1997; 70(4):391-402. PubMed ID: 9237299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consequences of hybridization and heterozygosity on plant vigor and phenotypic stability.
    Fridman E
    Plant Sci; 2015 Mar; 232():35-40. PubMed ID: 25617321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular marker genotypes, heterozygosity and genetic interactions explain heterosis in Arabidopsis thaliana.
    Syed NH; Chen ZJ
    Heredity (Edinb); 2005 Mar; 94(3):295-304. PubMed ID: 15316557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide identification and analysis of heterotic loci in three maize hybrids.
    Liu H; Wang Q; Chen M; Ding Y; Yang X; Liu J; Li X; Zhou C; Tian Q; Lu Y; Fan D; Shi J; Zhang L; Kang C; Sun M; Li F; Wu Y; Zhang Y; Liu B; Zhao XY; Feng Q; Yang J; Han B; Lai J; Zhang XS; Huang X
    Plant Biotechnol J; 2020 Jan; 18(1):185-194. PubMed ID: 31199059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.