These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 7790013)

  • 1. A three-dimensional finite element model of human transthoracic defibrillation: paddle placement and size.
    Camacho MA; Lehr JL; Eisenberg SR
    IEEE Trans Biomed Eng; 1995 Jun; 42(6):572-8. PubMed ID: 7790013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of paddle placement and size on defibrillation current distribution: a three-dimensional finite element model.
    Karlon WJ; Eisenberg SR; Lehr JL
    IEEE Trans Biomed Eng; 1993 Mar; 40(3):246-55. PubMed ID: 8335328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element models of thoracic conductive anatomy: sensitivity to changes in inhomogeneity and anisotropy.
    Karlon WJ; Lehr JL; Eisenberg SR
    IEEE Trans Biomed Eng; 1994 Nov; 41(11):1010-7. PubMed ID: 8001989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of cardiac defibrillation by three-dimensional finite element modeling of the human thorax.
    Panescu D; Webster JG; Tompkins WJ; Stratbucker RA
    IEEE Trans Biomed Eng; 1995 Feb; 42(2):185-92. PubMed ID: 7868146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element analysis of cardiac defibrillation current distributions.
    Sepulveda NG; Wikswo JP; Echt DS
    IEEE Trans Biomed Eng; 1990 Apr; 37(4):354-65. PubMed ID: 2338348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Placement of electrodes for defibrillation--a review of the evidence.
    Moulton C; Dreyer C; Dodds D; Yates DW
    Eur J Emerg Med; 2000 Jun; 7(2):135-43. PubMed ID: 11132075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational studies of transthoracic and transvenous defibrillation in a detailed 3-D human thorax model.
    Jorgenson DB; Haynor DR; Bardy GH; Kim Y
    IEEE Trans Biomed Eng; 1995 Feb; 42(2):172-84. PubMed ID: 7868145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane polarization induced in the myocardium by defibrillation fields: an idealized 3-D finite element bidomain/monodomain torso model.
    Huang Q; Eason JC; Claydon FJ
    IEEE Trans Biomed Eng; 1999 Jan; 46(1):26-34. PubMed ID: 9919823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling current density distributions during transcutaneous cardiac pacing.
    Panescu D; Webster JG; Stratbucker RA
    IEEE Trans Biomed Eng; 1994 Jun; 41(6):549-55. PubMed ID: 7927374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical current distribution under transthoracic defibrillation and pacing electrodes.
    Papazov S; Kostov Z; Daskalov I
    J Med Eng Technol; 2002; 26(1):22-7. PubMed ID: 11924843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A percutaneous catheter-based system for the measurement of potential gradients applicable to the study of transthoracic defibrillation.
    Rosborough JP; Deno DC; Walker RG; Niemann JT
    Pacing Clin Electrophysiol; 2007 Feb; 30(2):166-74. PubMed ID: 17338711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal muscle grids for assessing current distributions from defibrillation shocks.
    Schmidt J; Gatlin B; Eason J; Koomullil G; Pilkington T
    Crit Rev Biomed Eng; 1992; 20(1-2):121-39. PubMed ID: 1424684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical defibrillation optimization: an automated, iterative parallel finite-element approach.
    Hutchinson SA; Ng KT; Shadid JN; Nadeem A
    IEEE Trans Biomed Eng; 1997 Apr; 44(4):278-89. PubMed ID: 9125810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulated internal defibrillation in humans using an anatomically realistic three-dimensional finite element model of the thorax.
    Kinst TF; Sweeney MO; Lehr JL; Eisenberg SR
    J Cardiovasc Electrophysiol; 1997 May; 8(5):537-47. PubMed ID: 9160230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is optimal paddle force applied during paediatric external defibrillation?
    Bennetts SH; Deakin CD; Petley GW; Clewlow F
    Resuscitation; 2004 Jan; 60(1):29-32. PubMed ID: 14987780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transthoracic atrial defibrillation energy thresholds are correlated to uniformity of current density distributions.
    Hunt LC; de Jongh Curry AL
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4374-7. PubMed ID: 17946241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effectiveness of direct current defibrillation: role of paddle electrode size.
    Thomas ED; Ewy GA; Dahl CF; Ewy MD
    Am Heart J; 1977 Apr; 93(4):463-7. PubMed ID: 842442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated impedance-based energy adjustment for defibrillation: experimental studies.
    Kerber RE; McPherson D; Charbonnier F; Kieso R; Hite P
    Circulation; 1985 Jan; 71(1):136-40. PubMed ID: 3964715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of biventricular and conventional transvenous defibrillation: a computational study using patient derived models.
    Mocanu D; Kettenbach J; Sweeney MO; Kikinis R; Kenknight BH; Eisenberg SR
    Pacing Clin Electrophysiol; 2004 May; 27(5):586-93. PubMed ID: 15125713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative contribution of paddle electrode area and edge length to transthoracic impedance from a dc defibrillator discharge.
    Taren D; Ewy GA
    Med Instrum; 1979; 13(3):183-4. PubMed ID: 440179
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.