These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 7790020)

  • 61. FPGA-based voltage and current dual drive system for high frame rate electrical impedance tomography.
    Khan S; Manwaring P; Borsic A; Halter R
    IEEE Trans Med Imaging; 2015 Apr; 34(4):888-901. PubMed ID: 25376037
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A multifrequency serial EIT system.
    Chauveau N; Ayeva B; Rigaud B; Morucci JP
    Physiol Meas; 1996 Nov; 17 Suppl 4A():A7-13. PubMed ID: 9001597
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A wide-band AC-coupled current source for electrical impedance tomography.
    Bragós R; Rosell J; Riu P
    Physiol Meas; 1994 May; 15 Suppl 2a():A91-9. PubMed ID: 8087056
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Front end with offset-free symmetrical current source optimized for time domain impedance spectroscopy.
    Pliquett U; Schönfeldt M; Barthel A; Frense D; Nacke T; Beckmann D
    Physiol Meas; 2011 Jul; 32(7):927-44. PubMed ID: 21646715
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Attofarad resolution potentiostat for electrochemical measurements on nanoscale biomolecular interfacial systems.
    Carminati M; Ferrari G; Sampietro M
    Rev Sci Instrum; 2009 Dec; 80(12):124701. PubMed ID: 20059158
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An electrical impedance tomography microscope.
    Griffiths H; Tucker MG; Sage J; Herrenden-Harker WG
    Physiol Meas; 1996 Nov; 17 Suppl 4A():A15-24. PubMed ID: 9001598
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Front-end architecture for a multi-frequency electrical impedance tomography system.
    Jennings D; Schneider ID
    Med Biol Eng Comput; 2001 May; 39(3):368-74. PubMed ID: 11465893
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Bioelectrical spectroscopy from multi-frequency EIT.
    Griffiths H; Jossinet J
    Physiol Meas; 1994 May; 15 Suppl 2a():A59-63. PubMed ID: 8087051
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Wireless instrumentation system based on dry electrodes for acquiring EEG signals.
    Dias NS; Carmo JP; Mendes PM; Correia JH
    Med Eng Phys; 2012 Sep; 34(7):972-81. PubMed ID: 22153322
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A high-precision voltage source for EIT.
    Saulnier GJ; Ross AS; Liu N
    Physiol Meas; 2006 May; 27(5):S221-36. PubMed ID: 16636413
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A Low-power and Low-noise Multi-purpose Chopper Amplifier with High CMRR and PSRR.
    Shad E; Molinas M; Ytterdal T
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3998-4001. PubMed ID: 33018876
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A video-based system for acquiring biomechanical data synchronized with arbitrary events and activities.
    Yen TY; Radwin RG
    IEEE Trans Biomed Eng; 1995 Sep; 42(9):944-8. PubMed ID: 7558070
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A small-area low-power current readout circuit using two-stage conversion method for 64-channel CNT sensor arrays.
    Shin YS; Lee S; Wee JK; Song I
    IEEE Trans Biomed Circuits Syst; 2013 Jun; 7(3):276-84. PubMed ID: 23853327
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A low-voltage low-power front-end for wearable EEG systems.
    Yates D; López-Morillo E; Carvajal RG; Ramirez-Angulo J; Rodriguez-Villegas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5282-5. PubMed ID: 18003199
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A comparison of gel-to-gel and skin measurements of electrode impedance.
    Klingler DR; Schoenberg AA; Worth NP; Egleston CF; Burkart JA
    Med Instrum; 1979; 13(5):266-8. PubMed ID: 502922
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A 2.55 NEF 76 dB CMRR DC-Coupled Fully Differential Difference Amplifier Based Analog Front End for Wearable Biomedical Sensors.
    Zhao Y; Shang Z; Lian Y
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):918-926. PubMed ID: 31247560
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Electrical concepts in the surface electromyographic signal.
    Bolek JE
    Appl Psychophysiol Biofeedback; 2010 Jun; 35(2):171-5. PubMed ID: 19838800
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A 122 fps, 1 MHz Bandwidth Multi-Frequency Wearable EIT Belt Featuring Novel Active Electrode Architecture for Neonatal Thorax Vital Sign Monitoring.
    Wu Y; Jiang D; Bardill A; Bayford R; Demosthenous A
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):927-937. PubMed ID: 31283510
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A high output impedance current source.
    Denyer CW; Lidgey FJ; Zhu QS; McLeod CN
    Physiol Meas; 1994 May; 15 Suppl 2a():A79-82. PubMed ID: 8087054
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A comparison of modified Howland circuits as current generators with current mirror type circuits.
    Bertemes-Filho P; Brown BH; Wilson AJ
    Physiol Meas; 2000 Feb; 21(1):1-6. PubMed ID: 10719993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.