BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 7790420)

  • 1. Enhanced cerebrovascular responsiveness to hypercapnia following depletion of central serotonergic terminals.
    Kelly PA; Ritchie IM; McBean DE; Sharkey J; Olverman HJ
    J Cereb Blood Flow Metab; 1995 Jul; 15(4):706-13. PubMed ID: 7790420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for a possible role for serotonergic systems in the control of cerebral blood flow.
    McBean DE; Sharkey J; Ritchie IM; Kelly PA
    Brain Res; 1990 Dec; 537(1-2):307-10. PubMed ID: 2128199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitro-L-arginine attenuates hypercapnic cerebrovasodilation without affecting cerebral metabolism.
    Iadecola C; Xu X
    Am J Physiol; 1994 Feb; 266(2 Pt 2):R518-25. PubMed ID: 8141411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracerebral fetal raphé implants normalize hippocampal function but not cerebrovascular control in serotonin-depleted adult rat brain.
    Kelly PA; McBean DE; Ritchie IM
    Neuroscience; 1998 Jul; 85(1):63-72. PubMed ID: 9607703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistent cerebrovascular effects of MDMA and acute responses to the drug.
    Ferrington L; Kirilly E; McBean DE; Olverman HJ; Bagdy G; Kelly PA
    Eur J Neurosci; 2006 Jul; 24(2):509-19. PubMed ID: 16836637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute tryptophan depletion potentiates 3,4-methylenedioxymethamphetamine-induced cerebrovascular hyperperfusion in adult male Wistar rats.
    van Donkelaar EL; Kelly PA; Dawson N; Blokland A; Prickaerts J; Steinbusch HW; Ferrington L
    J Neurosci Res; 2010 May; 88(7):1557-68. PubMed ID: 19998482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in local cerebral blood flow in mature rats following prenatal exposure to cocaine.
    Kelly PA; Ritchie IM; Sharkey J; McBean DE
    Neuroscience; 1994 May; 60(1):183-9. PubMed ID: 8052411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of nitric oxide synthesis: effects on cerebral blood flow and glucose utilisation in the rat.
    Macrae IM; Dawson DA; Norrie JD; McCulloch J
    J Cereb Blood Flow Metab; 1993 Nov; 13(6):985-92. PubMed ID: 7691855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic effects of the selective serotoninergic neurotoxin, methylenedioxyamphetamine, upon cerebral function.
    McBean DE; Sharkey J; Ritchie IM; Kelly PA
    Neuroscience; 1990; 38(1):271-5. PubMed ID: 2255397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in hippocampal function following repeated exposure to the amphetamine derivative methylenedioxymethamphetamine ("Ecstasy").
    Sharkey J; McBean DE; Kelly PA
    Psychopharmacology (Berl); 1991; 105(1):113-8. PubMed ID: 1684057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autoradiographic localization of 3H-paroxetine-labeled serotonin uptake sites in rat brain.
    De Souza EB; Kuyatt BL
    Synapse; 1987; 1(5):488-96. PubMed ID: 2975068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroanatomic specificity and time course of alterations in rat brain serotonergic pathways induced by MDMA (3,4-methylenedioxymethamphetamine): assessment using quantitative autoradiography.
    Battaglia G; Sharkey J; Kuhar MJ; de Souza EB
    Synapse; 1991 Aug; 8(4):249-60. PubMed ID: 1681594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3,4-Methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine destroy serotonin terminals in rat brain: quantification of neurodegeneration by measurement of [3H]paroxetine-labeled serotonin uptake sites.
    Battaglia G; Yeh SY; O'Hearn E; Molliver ME; Kuhar MJ; De Souza EB
    J Pharmacol Exp Ther; 1987 Sep; 242(3):911-6. PubMed ID: 2443644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paroxetine as an in vivo indicator of 3,4-methylenedioxymethamphetamine neurotoxicity: a presynaptic serotonergic positron emission tomography ligand?
    Scheffel U; Ricaurte GA
    Brain Res; 1990 Sep; 527(1):89-95. PubMed ID: 1980843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of dorsal raphe nucleus stimulation on cerebral blood flow and flow-metabolism coupling in the conscious rat.
    Cudennec A; Bonvento G; Duverger D; Lacombe P; Seylaz J; MacKenzie ET
    Neuroscience; 1993 Jul; 55(2):395-401. PubMed ID: 8377932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative measurements of cerebral blood flow in rats using the FAIR technique: correlation with previous iodoantipyrine autoradiographic studies.
    Tsekos NV; Zhang F; Merkle H; Nagayama M; Iadecola C; Kim SG
    Magn Reson Med; 1998 Apr; 39(4):564-73. PubMed ID: 9543418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prior exposure to methylenedioxyamphetamine (MDA) induces serotonergic loss and changes in spontaneous exploratory and amphetamine-induced behaviors in rats.
    Harkin A; Connor TJ; Mulrooney J; Kelly JP; Leonard BE
    Life Sci; 2001 Feb; 68(12):1367-82. PubMed ID: 11388689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative autoradiography of the serotonin transporter to assess the distribution of serotonergic projections from the dorsal raphe nucleus.
    Hensler JG; Ferry RC; Labow DM; Kovachich GB; Frazer A
    Synapse; 1994 May; 17(1):1-15. PubMed ID: 8042142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncoupling of cerebral blood flow and metabolism after cerebral contusion in the rat.
    Richards HK; Simac S; Piechnik S; Pickard JD
    J Cereb Blood Flow Metab; 2001 Jul; 21(7):779-81. PubMed ID: 11435789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slightly altered permeability-surface area products imply some cerebral capillary recruitment during hypercapnia.
    Chen JL; Wei L; Acuff V; Bereczki D; Hans FJ; Otsuka T; Finnegan W; Patlak C; Fenstermacher J
    Microvasc Res; 1994 Sep; 48(2):190-211. PubMed ID: 7854205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.