BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 7790734)

  • 1. Large stationary microstrip arrays for superficial microwave hyperthermia at 433 MHz: SAR analysis and clinical data.
    Ryan TP; Backus VL; Coughlin CT
    Int J Hyperthermia; 1995; 11(2):187-209. PubMed ID: 7790734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAR characteristics of three types of Contact Flexible Microstrip Applicators for superficial hyperthermia.
    Lamaitre G; Van Dijk JD; Gelvich EA; Wiersma J; Schneider CJ
    Int J Hyperthermia; 1996; 12(2):255-69. PubMed ID: 8926393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heating pattern of helical microwave intracavitary oesophageal applicator.
    Liu RL; Zhang EY; Gross EJ; Cetas TC
    Int J Hyperthermia; 1991; 7(4):577-86. PubMed ID: 1919153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spiral microstrip hyperthermia applicators: technical design and clinical performance.
    Samulski TV; Fessenden P; Lee ER; Kapp DS; Tanabe E; McEuen A
    Int J Radiat Oncol Biol Phys; 1990 Jan; 18(1):233-42. PubMed ID: 2298626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical characterization of dual concentric conductor microwave applicators for hyperthermia at 433 MHz.
    Rossetto F; Stauffer PR
    Int J Hyperthermia; 2001; 17(3):258-70. PubMed ID: 11347730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia.
    Diederich CJ; Stauffer PR
    Int J Hyperthermia; 1993; 9(2):227-46. PubMed ID: 8468507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia.
    Chakaravarthi G; Arunachalam K
    Int J Hyperthermia; 2015; 31(7):737-48. PubMed ID: 26365603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metamaterial based AMC backed archimedean spiral antenna for in-vitro microwave hyperthermia of skin cancer.
    Kaur K; Kaur A
    Electromagn Biol Med; 2023 Oct; 42(4):163-181. PubMed ID: 38156657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SAR deposition by curved CFMA-434 applicators for superficial hyperthermia: Measurements and simulations.
    Petra Kok H; Correia D; De Greef M; Van Stam G; Bel A; Crezee J
    Int J Hyperthermia; 2010; 26(2):171-84. PubMed ID: 20146571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a dual-arm Archimedean spiral array for microwave hyperthermia.
    Johnson JE; Neuman DG; Maccarini PF; Juang T; Stauffer PR; Turner P
    Int J Hyperthermia; 2006 Sep; 22(6):475-90. PubMed ID: 16971368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of practical layered dielectric loads on SAR patterns from dual concentric conductor microstrip antennas.
    Rossetto F; Stauffer PR; Manfrini V; Diederich CJ; Biffi Gentili G
    Int J Hyperthermia; 1998; 14(6):553-71. PubMed ID: 9886662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics and performance evaluation of the capacitive Contact Flexible Microstrip Applicator operating at 70 MHz for external hyperthermia.
    van Wieringen N; Wiersma J; Zum Vörde Sive Vörding P; Oldenborg S; Gelvich EA; Mazokhin VN; van Dijk JD; Crezee J
    Int J Hyperthermia; 2009 Nov; 25(7):542-53. PubMed ID: 19848617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of a beam shaping bolus for superficial microwave hyperthermia waveguide applicators using a finite element method.
    Kumaradas JC; Sherar MD
    Phys Med Biol; 2003 Jan; 48(1):1-18. PubMed ID: 12564497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiation patterns of dual concentric conductor microstrip antennas for superficial hyperthermia.
    Stauffer PR; Rossetto F; Leoncini M; Gentilli GB
    IEEE Trans Biomed Eng; 1998 May; 45(5):605-13. PubMed ID: 9581059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contact flexible microstrip applicators (CFMA) in a range from microwaves up to short waves.
    Gelvich EA; Mazokhin VN
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1015-23. PubMed ID: 12214873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of six microwave antennas for hyperthermia treatment of cancer: sar results for single antennas and arrays.
    Ryan TP
    Int J Radiat Oncol Biol Phys; 1991 Jul; 21(2):403-13. PubMed ID: 2061117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of microwave hyperthermia applicators.
    Chou CK
    Bioelectromagnetics; 1992; 13(6):581-97. PubMed ID: 1482420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific absorption rates in simulated tissue media for a 10 x 10 cm 915-MHz waveguide applicator.
    Denman DL; Kolasa MJ; Elson HR; Aron BS; Kereiakes JG
    Med Phys; 1987; 14(4):681-6. PubMed ID: 3627011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstrip-antenna design for hyperthermia treatment of superficial tumors.
    Montecchia F
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):580-8. PubMed ID: 1601439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Measures of specific absorption rate (SAR) in microwave hyperthermic oncology and the influence of the dynamic bolus on clinical practice].
    Marini P; Guiot C; Baiotto B; Gabriele P
    Radiol Med; 2001 Sep; 102(3):159-67. PubMed ID: 11677459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.