These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 7790740)

  • 21. The Green's functions for peridynamic non-local diffusion.
    Wang LJ; Xu JF; Wang JX
    Proc Math Phys Eng Sci; 2016 Sep; 472(2193):20160185. PubMed ID: 27713658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Steady state temperature rise in multilayered tissue due to arbitrary periodic SAR using finite difference FFT and transfer function method.
    Gajda GB; Paradis J; Lemay E
    Biomed Phys Eng Express; 2021 Jun; 7(4):. PubMed ID: 34077918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical simulation of dual-phase-lag bioheat transfer model during thermal therapy.
    Kumar P; Kumar D; Rai KN
    Math Biosci; 2016 Nov; 281():82-91. PubMed ID: 27621039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical calculations of the temperature distribution in realistic cross sections of the human body.
    Iskander MF; Khoshdel-Milani O
    Int J Radiat Oncol Biol Phys; 1984 Oct; 10(10):1907-12. PubMed ID: 6490421
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temperature distribution in tissues from a regular array of hot source implants: an analytical approximation.
    Haider SA; Cetas TC; Roemer RB
    IEEE Trans Biomed Eng; 1993 May; 40(5):408-17. PubMed ID: 8225329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Limitations and significance of thermal washout data obtained during microwave and ultrasound hyperthermia.
    Newman WH; Lele PP; Bowman HF
    Int J Hyperthermia; 1990; 6(4):771-84. PubMed ID: 2394925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstruction of thermal property distributions of tissue phantoms from temperature measurements--thermal conductivity, thermal capacity and thermal diffusivity.
    Sumi C; Yanagimura H
    Phys Med Biol; 2007 May; 52(10):2845-63. PubMed ID: 17473355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating.
    Liu J; Chen X; Xu LX
    IEEE Trans Biomed Eng; 1999 Apr; 46(4):420-8. PubMed ID: 10217880
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Finite element based Green's function integral equation for modelling light scattering.
    Li W; Tan D; Xu J; Wang S; Chen Y
    Opt Express; 2019 May; 27(11):16047-16057. PubMed ID: 31163791
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fast FFT-based bioheat transfer equation computation.
    Dillenseger JL; Esneault S
    Comput Biol Med; 2010 Feb; 40(2):119-23. PubMed ID: 20018277
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heat transfer mechanisms and thermal dosimetry.
    Bowman HF
    Natl Cancer Inst Monogr; 1982 Jun; 61():437-45. PubMed ID: 7177188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A meshless point collocation treatment of transient bioheat problems.
    Bourantas GC; Loukopoulos VC; Burganos VN; Nikiforidis GC
    Int J Numer Method Biomed Eng; 2014 May; 30(5):587-601. PubMed ID: 24574248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heat transfer analysis of skin during thermal therapy using thermal wave equation.
    Kashcooli M; Salimpour MR; Shirani E
    J Therm Biol; 2017 Feb; 64():7-18. PubMed ID: 28166948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature distributions from interstitial rf electrode hyperthermia systems: theoretical predictions.
    Strohbehn JW
    Int J Radiat Oncol Biol Phys; 1983 Nov; 9(11):1655-67. PubMed ID: 6643161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal modeling for pulsed radiofrequency ablation: analytical study based on hyperbolic heat conduction.
    López Molina JA; Rivera MJ; Trujillo M; Berjano EJ
    Med Phys; 2009 Apr; 36(4):1112-9. PubMed ID: 19472616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Research on adaptive temperature control in sound field induced by self-focused concave spherical transducer.
    Hu J; Qian S; Ding Y
    Ultrasonics; 2010 May; 50(6):628-33. PubMed ID: 20156630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D-specific absorption rate estimation from high-intensity focused ultrasound sonications using the Green's function heat kernel.
    Freeman NJ; Odéen H; Parker DL
    Med Phys; 2018 Jul; 45(7):3109-3119. PubMed ID: 29772066
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the efficient evaluation of the azimuthal Fourier components of the Green's function for Helmholtz's equation in cylindrical coordinates.
    Garritano J; Kluger Y; Rokhlin V; Serkh K
    J Comput Phys; 2022 Dec; 451():. PubMed ID: 36171963
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inverse techniques in hyperthermia: a sensitivity study.
    Clegg ST; Samulski TV; Murphy KA; Rosner GL; Dewhirst MW
    IEEE Trans Biomed Eng; 1994 Apr; 41(4):373-82. PubMed ID: 8063303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A semilinear state and parameter estimation algorithm for inverse hyperthermia problems.
    Liauh CT; Roemer RB
    J Biomech Eng; 1993 Aug; 115(3):257-61. PubMed ID: 8231140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.