These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7791044)

  • 1. In vitro test of intraocular lens biocompatibility.
    Cortina P; Gomez-Lechon MJ; Navea A; Menezo JL
    J Cataract Refract Surg; 1995 Mar; 21(2):112-3. PubMed ID: 7791044
    [No Abstract]   [Full Text] [Related]  

  • 2. An evaluation of the biocompatibility of intraocular lenses.
    Majima K
    Ophthalmic Surg Lasers; 1996 Nov; 27(11):946-51. PubMed ID: 8938804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of the effects of optic design on lens epithelium in vitro.
    Santos BA; Pastora R; DelMonte MA; O'Donnell FE
    J Cataract Refract Surg; 1987 Mar; 13(2):127-30. PubMed ID: 3572767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility of intraocular lens materials.
    Werner L
    Curr Opin Ophthalmol; 2008 Jan; 19(1):41-9. PubMed ID: 18090897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anterior capsule opacification in monkey eyes with posterior chamber intraocular lenses.
    Ishibashi T; Araki H; Sugai S; Tawara A; Ohnishi Y; Inomata H
    Arch Ophthalmol; 1993 Dec; 111(12):1685-90. PubMed ID: 8155040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibrin reaction and its cause. Prostaglandin E2--synthesis by residual lens epithelial cells.
    Nishi O; Nishi K
    Dev Ophthalmol; 1991; 22():126-31. PubMed ID: 1936439
    [No Abstract]   [Full Text] [Related]  

  • 7. Uveal and capsular biocompatibility of an intraocular lens with a hydrophilic anterior surface and a hydrophobic posterior surface.
    Huang XD; Yao K; Zhang Z; Zhang Y; Wang Y
    J Cataract Refract Surg; 2010 Feb; 36(2):290-8. PubMed ID: 20152613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro, adhesive fixation of a posterior chamber lens optic: implications for lens centration and posterior capsule opacification.
    O'Donnell FE; Santos BA
    J Cataract Refract Surg; 1991 May; 17(3):384-5. PubMed ID: 1861259
    [No Abstract]   [Full Text] [Related]  

  • 9. Lens epithelial cells adhere less to HEMA than to PMMA intraocular lenses.
    Humphry RC; Ball SP; Brammall JE; Conn SJ; Rich WJ
    Eye (Lond); 1991; 5 ( Pt 1)():66-9. PubMed ID: 2060674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absence of SPARC in murine lens epithelium leads to increased deposition of laminin-1 in lens capsule.
    Yan Q; Perdue N; Blake D; Sage EH
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4652-60. PubMed ID: 16303962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adherence of human lens epithelial cells to conventional poly(methyl methacrylate), heparin-surface-modified, and polyHema lenses.
    Power WJ; Neylan D; Collum LM
    J Cataract Refract Surg; 1994 Jul; 20(4):440-5. PubMed ID: 7932135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vitro study of human lens epithelial cell adhesion to intraocular lenses with and without a fibronectin coating.
    Cooke CA; McGimpsey S; Mahon G; Best RM
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):2985-9. PubMed ID: 16799043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo inhibition of lens regrowth by fibroblast growth factor 2-saporin.
    Behar-Cohen FF; David T; D'Hermies F; Pouliquen YM; Buechler Y; Nova MP; Houston LL; Courtois Y
    Invest Ophthalmol Vis Sci; 1995 Nov; 36(12):2434-48. PubMed ID: 7591633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface properties of intraocular lens materials and their influence on in vitro cell adhesion.
    Cunanan CM; Tarbaux NM; Knight PM
    J Cataract Refract Surg; 1991 Nov; 17(6):767-73. PubMed ID: 1774648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous curvilinear capsulorhexis and intraocular lens biocompatibility.
    Pande M; Spalton DJ; Marshall J
    J Cataract Refract Surg; 1996; 22(1):89-97. PubMed ID: 8656371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential responses of human lens epithelial cells to intraocular lenses in vitro: hydrophobic acrylic versus PMMA or silicone discs.
    Yan Q; Perdue N; Sage EH
    Graefes Arch Clin Exp Ophthalmol; 2005 Dec; 243(12):1253-62. PubMed ID: 15909158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adhesion study of cultured human lens capsule cells on hydrophilic intraocular lenses coated with polyethylene glycol.
    Viveiros MM; Soares RT; Omodei MS; Rainho CA; Padovani CR; Cruz N; Schellini SA; Rodrigues AC
    J Cataract Refract Surg; 2015 Jul; 41(7):1478-83. PubMed ID: 26210051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lens epithelial cells in an in vitro capsular bag model: lens-in-the-bag versus bag-in-the-lens technique.
    De Keyzer K; Leysen I; Timmermans JP; Tassignon MJ
    J Cataract Refract Surg; 2008 Apr; 34(4):687-95. PubMed ID: 18361994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of different shape and material of intraocular lens on posterior capsule opacification].
    Szaliński M; Oficjalska-Młyńczak J; Zajac-Pytrus H
    Klin Oczna; 2005; 107(1-3):156-8. PubMed ID: 16052830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Design of a test chamber for simulation of adhesion pressure of the anterior lens capsule on the intraocular lens].
    Rybka M; Etzrodt D; Maschke D; Guthoff R; Behrend D; Schmitz KP
    Biomed Tech (Berl); 1998; 43 Suppl():420-1. PubMed ID: 9859425
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.