These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 7791211)
1. Crystal structure of the human cell cycle protein CksHs1: single domain fold with similarity to kinase N-lobe domain. Arvai AS; Bourne Y; Hickey MJ; Tainer JA J Mol Biol; 1995 Jun; 249(5):835-42. PubMed ID: 7791211 [TBL] [Abstract][Full Text] [Related]
2. The structure of a monomeric mutant Cks protein reveals multiple functions for a conserved hinge-region proline. Balog ER; Saetern OC; Finch W; Hoeft CO; Thai V; Harvey SL; Kellogg DR; Rubin SM J Mol Biol; 2011 Aug; 411(3):520-8. PubMed ID: 21704044 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of the yeast cell-cycle control protein, p13suc1, in a strand-exchanged dimer. Khazanovich N; Bateman K; Chernaia M; Michalak M; James M Structure; 1996 Mar; 4(3):299-309. PubMed ID: 8805536 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure and mutational analysis of the human CDK2 kinase complex with cell cycle-regulatory protein CksHs1. Bourne Y; Watson MH; Hickey MJ; Holmes W; Rocque W; Reed SI; Tainer JA Cell; 1996 Mar; 84(6):863-74. PubMed ID: 8601310 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure and mutational analysis of the Saccharomyces cerevisiae cell cycle regulatory protein Cks1: implications for domain swapping, anion binding and protein interactions. Bourne Y; Watson MH; Arvai AS; Bernstein SL; Reed SI; Tainer JA Structure; 2000 Aug; 8(8):841-50. PubMed ID: 10997903 [TBL] [Abstract][Full Text] [Related]
6. Folding and association of the human cell cycle regulatory proteins ckshs1 and ckshs2. Seeliger MA; Schymkowitz JW; Rousseau F; Wilkinson HR; Itzhaki LS Biochemistry; 2002 Jan; 41(4):1202-10. PubMed ID: 11802719 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of the cell cycle-regulatory protein suc1 reveals a beta-hinge conformational switch. Bourne Y; Arvai AS; Bernstein SL; Watson MH; Reed SI; Endicott JE; Noble ME; Johnson LN; Tainer JA Proc Natl Acad Sci U S A; 1995 Oct; 92(22):10232-6. PubMed ID: 7479758 [TBL] [Abstract][Full Text] [Related]
8. A model of Cdc25 phosphatase catalytic domain and Cdk-interaction surface based on the presence of a rhodanese homology domain. Hofmann K; Bucher P; Kajava AV J Mol Biol; 1998 Sep; 282(1):195-208. PubMed ID: 9733650 [TBL] [Abstract][Full Text] [Related]
9. Crystallization and preliminary crystallographic study of human CksHs1: a cell cycle regulatory protein. Arvai AS; Bourne Y; Williams D; Reed SI; Tainer JA Proteins; 1995 Jan; 21(1):70-3. PubMed ID: 7716171 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of the pyridoxal-5'-phosphate dependent cystathionine beta-lyase from Escherichia coli at 1.83 A. Clausen T; Huber R; Laber B; Pohlenz HD; Messerschmidt A J Mol Biol; 1996 Sep; 262(2):202-24. PubMed ID: 8831789 [TBL] [Abstract][Full Text] [Related]
11. Human CksHs2 atomic structure: a role for its hexameric assembly in cell cycle control. Parge HE; Arvai AS; Murtari DJ; Reed SI; Tainer JA Science; 1993 Oct; 262(5132):387-95. PubMed ID: 8211159 [TBL] [Abstract][Full Text] [Related]
12. Sequence conservation provides the best prediction of the role of proline residues in p13suc1. Schymkowitz JW; Rousseau F; Itzhaki LS J Mol Biol; 2000 Aug; 301(1):199-204. PubMed ID: 10926502 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of the regulatory subunit of archaeal initiation factor 2B (aIF2B) from hyperthermophilic archaeon Pyrococcus horikoshii OT3: a proposed structure of the regulatory subcomplex of eukaryotic IF2B. Kakuta Y; Tahara M; Maetani S; Yao M; Tanaka I; Kimura M Biochem Biophys Res Commun; 2004 Jul; 319(3):725-32. PubMed ID: 15184043 [TBL] [Abstract][Full Text] [Related]
14. The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 A resolution: structural characterization of proline-substitution sites for protein thermostabilization. Watanabe K; Hata Y; Kizaki H; Katsube Y; Suzuki Y J Mol Biol; 1997 May; 269(1):142-53. PubMed ID: 9193006 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of the carbohydrate recognition domain of the H1 subunit of the asialoglycoprotein receptor. Meier M; Bider MD; Malashkevich VN; Spiess M; Burkhard P J Mol Biol; 2000 Jul; 300(4):857-65. PubMed ID: 10891274 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of the alpha subunit of human translation initiation factor 2B. Hiyama TB; Ito T; Imataka H; Yokoyama S J Mol Biol; 2009 Oct; 392(4):937-51. PubMed ID: 19631657 [TBL] [Abstract][Full Text] [Related]
17. Structure of the conserved transcriptional repressor enhancer of rudimentary homolog. Wan C; Tempel W; Liu ZJ; Wang BC; Rose RB Biochemistry; 2005 Apr; 44(13):5017-23. PubMed ID: 15794639 [TBL] [Abstract][Full Text] [Related]
18. A 1.8 A resolution structure of pig muscle 3-phosphoglycerate kinase with bound MgADP and 3-phosphoglycerate in open conformation: new insight into the role of the nucleotide in domain closure. Szilágyi AN; Ghosh M; Garman E; Vas M J Mol Biol; 2001 Feb; 306(3):499-511. PubMed ID: 11178909 [TBL] [Abstract][Full Text] [Related]
19. Preliminary crystallographic analysis of the Cks protein p13(suc1P90AP92A) from Schizosacharromyces pombe. Kelly JA; Williams EA; Wilce MC Eur Biophys J; 2005 Jul; 34(5):430-3. PubMed ID: 15843986 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure, biochemical and genetic characterization of yeast and E. cuniculi TAF(II)5 N-terminal domain: implications for TFIID assembly. Romier C; James N; Birck C; Cavarelli J; Vivarès C; Collart MA; Moras D J Mol Biol; 2007 May; 368(5):1292-306. PubMed ID: 17397863 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]