BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

537 related articles for article (PubMed ID: 7791215)

  • 1. Nag repressor-operator interactions: protein-DNA contacts cover more than two turns of the DNA helix.
    Plumbridge J; Kolb A
    J Mol Biol; 1995 Jun; 249(5):890-902. PubMed ID: 7791215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently).
    Plumbridge J
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):371-80. PubMed ID: 11361067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The arginine repressor of Escherichia coli K-12 makes direct contacts to minor and major groove determinants of the operators.
    Wang H; Glansdorff N; Charlier D
    J Mol Biol; 1998 Apr; 277(4):805-24. PubMed ID: 9545374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CAP and Nag repressor binding to the regulatory regions of the nagE-B and manX genes of Escherichia coli.
    Plumbridge J; Kolb A
    J Mol Biol; 1991 Feb; 217(4):661-79. PubMed ID: 1848637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions.
    Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D
    J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA binding sites for the Mlc and NagC proteins: regulation of nagE, encoding the N-acetylglucosamine-specific transporter in Escherichia coli.
    Plumbridge J
    Nucleic Acids Res; 2001 Jan; 29(2):506-14. PubMed ID: 11139621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of the chitobiose operon of Escherichia coli is regulated by three transcription factors: NagC, ChbR and CAP.
    Plumbridge J; Pellegrini O
    Mol Microbiol; 2004 Apr; 52(2):437-49. PubMed ID: 15066032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of lysine 55 in determining the specificity of the purine repressor for its operators through minor groove interactions.
    Glasfeld A; Koehler AN; Schumacher MA; Brennan RG
    J Mol Biol; 1999 Aug; 291(2):347-61. PubMed ID: 10438625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the physical basis for trp repressor-operator recognition.
    Grillo AO; Brown MP; Royer CA
    J Mol Biol; 1999 Apr; 287(3):539-54. PubMed ID: 10092458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of the asymmetrical contact between lac repressor and lac operator DNA.
    Rastinejad F; Artz P; Lu P
    J Mol Biol; 1993 Oct; 233(3):389-99. PubMed ID: 8411152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between RNA polymerase and the positive and negative regulators of transcription at the Escherichia coli gal operon.
    Dalma-Weiszhausz DD; Brenowitz M
    Biochemistry; 1996 Mar; 35(12):3735-45. PubMed ID: 8619994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo and in vitro studies of TrpR-DNA interactions.
    Yang J; Gunasekera A; Lavoie TA; Jin L; Lewis DE; Carey J
    J Mol Biol; 1996 Apr; 258(1):37-52. PubMed ID: 8613990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA bending and expression of the divergent nagE-B operons.
    Plumbridge J; Kolb A
    Nucleic Acids Res; 1998 Mar; 26(5):1254-60. PubMed ID: 9469834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site.
    Frank DE; Saecker RM; Bond JP; Capp MW; Tsodikov OV; Melcher SE; Levandoski MM; Record MT
    J Mol Biol; 1997 Apr; 267(5):1186-206. PubMed ID: 9150406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of protein-protein bridging interactions on cooperative assembly of DNA-bound CRP-CytR-CRP complex and regulation of the Escherichia coli CytR regulon.
    Chahla M; Wooll J; Laue TM; Nguyen N; Senear DF
    Biochemistry; 2003 Apr; 42(13):3812-25. PubMed ID: 12667072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular analysis of the regulation of csiD, a carbon starvation-inducible gene in Escherichia coli that is exclusively dependent on sigma s and requires activation by cAMP-CRP.
    Marschall C; Labrousse V; Kreimer M; Weichart D; Kolb A; Hengge-Aronis R
    J Mol Biol; 1998 Feb; 276(2):339-53. PubMed ID: 9512707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dimeric lac repressors exhibit phase-dependent co-operativity.
    Müller J; Barker A; Oehler S; Müller-Hill B
    J Mol Biol; 1998 Dec; 284(4):851-7. PubMed ID: 9837708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA loop formation between Nag repressor molecules bound to its two operator sites is necessary for repression of the nag regulon of Escherichia coli in vivo.
    Plumbridge J; Kolb A
    Mol Microbiol; 1993 Dec; 10(5):973-81. PubMed ID: 7934873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties.
    Karaivanova IM; Weigel P; Takahashi M; Fort C; Versavaud A; Van Duyne G; Charlier D; Hallet JN; Glansdorff N; Sakanyan V
    J Mol Biol; 1999 Aug; 291(4):843-55. PubMed ID: 10452892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repression of galP, the galactose transporter in Escherichia coli, requires the specific regulator of N-acetylglucosamine metabolism.
    El Qaidi S; Allemand F; Oberto J; Plumbridge J
    Mol Microbiol; 2009 Jan; 71(1):146-57. PubMed ID: 19007420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.