These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 7791345)

  • 61. Cardiomyoplasty: transformation of the assisting muscle using intermittent versus continuous stimulation.
    Ianuzzo CD; Ianuzzo SE; Anderson WA
    J Card Surg; 1996; 11(4):293-303. PubMed ID: 8902644
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Comparative study of the biomechanical performance of trained and untrained skeletal muscle.
    Petrou M; Bowles C; Yacoub M
    Cardiovasc Res; 1997 Mar; 33(3):583-92. PubMed ID: 9093528
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Altered mechanical responses of malignant hyperthermic skeletal muscle during repetitive stimulation.
    Williams JH; Holland M; Ward CW; Lee JC
    J Physiol Paris; 1992; 86(4):159-65. PubMed ID: 1343601
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Skeletal muscle is sensitive to the tension-time integral but not to the rate of change of tension, as assessed by mechanically induced signaling.
    Martineau LC; Gardiner PF
    J Biomech; 2002 May; 35(5):657-63. PubMed ID: 11955505
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Physiologic characteristics of canine skeletal muscle: implications for timing skeletal muscle cardiac assist devices.
    Letsou GV; Hogan JF; Bsee ; Miller CC; Elefteriades JA; Francischelli D; Baldwin JC; Safi HJ
    Ann Thorac Surg; 2001 Oct; 72(4):1336-42; discussion 1343. PubMed ID: 11603457
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Dynamic cardiomyoplasty using artificial muscle.
    Suzuki Y; Daitoku K; Minakawa M; Fukui K; Fukuda I
    J Artif Organs; 2008; 11(3):160-2. PubMed ID: 18836878
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mechanical properties of rabbit latissimus dorsi muscle after stretch and/or electrical stimulation.
    James RS; Cox VM; Young IS; Altringham JD; Goldspink DF
    J Appl Physiol (1985); 1997 Aug; 83(2):398-406. PubMed ID: 9262433
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Estimating the minimum stimulation frequency necessary to evoke tetanic progression based on muscle twitch parameters.
    Watanabe S; Fukuhara S; Fujinaga T; Oka H
    Physiol Meas; 2017 Mar; 38(3):466-476. PubMed ID: 28140341
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Comparison of different regimens of electrical stimulation applied to nonmobilized and newly mobilized latissimus dorsi muscle.
    Chekanov VS; Rieder MA; Tchekanov GV; Smith LM; Eisenstein R; Schmidt DH
    J Card Surg; 1997; 12(5):343-53. PubMed ID: 9635273
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A data-acquisition system for the analysis of the isometric tension generated by an electrically stimulated skeletal muscle.
    Athanasiadis AD; Hatzopoulos AA; Theophilidis G
    Comput Appl Biosci; 1993 Jun; 9(3):325-30. PubMed ID: 8324632
    [TBL] [Abstract][Full Text] [Related]  

  • 71. In situ measurements of skeletal muscle power output using new capacitive strain gauge.
    Cooper PG; Wilson GJ; Hardman DT; Kawaguchi O; Huang YF; Martinez-Coll A; Carrington R; Puchert E; Crameri R; Horam C; Hunyor SN
    Med Biol Eng Comput; 1999 Jul; 37(4):451-5. PubMed ID: 10696701
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mechanics of human quadriceps muscle.
    Coirault C; Riou B; Pery-Man N; Suard I; Lecarpentier Y
    J Appl Physiol (1985); 1994 Oct; 77(4):1769-75. PubMed ID: 7836198
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Use of dP/dt and rise time to estimate speed of shortening in muscle.
    Stevens ED; Renaud JM
    Am J Physiol; 1985 Nov; 249(5 Pt 2):R510-3. PubMed ID: 4061675
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Electrical stimulation, muscle tension and glycolysis in bovine Sternomandibularis.
    Chrystall BB; Devine CE
    Meat Sci; 1978 Jan; 2(1):49-58. PubMed ID: 22054838
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Myo-mechanical analysis of isolated skeletal muscle.
    Oishi PE; Cholsiripunlert S; Gong W; Baker AJ; Bernstein HS
    J Vis Exp; 2011 Feb; (48):. PubMed ID: 21403622
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The active state of mammalian skeletal muscle.
    Bahler AS; Fales JT; Zierler KL
    J Gen Physiol; 1967 Oct; 50(9):2239-53. PubMed ID: 6064149
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Skeletal muscle of a growing organism has a greater transformation after electrical stimulation than adult skeletal muscle.
    Chekanov VS; Tchekanov GV; Rieder MA; Cheng Q; Smith LM; Zander GL; Christensen CW; McConchie S; Jacobs G; Schmidt DH
    ASAIO J; 1996; 42(5):M630-6. PubMed ID: 8944957
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The time course of early changes in the rate of tension development in electrically-stimulated frog toe muscle: effects of muscle length, temperature and twitch-potentiators.
    Foulks JG; Perry FA
    J Physiol; 1966 Jul; 185(2):355-81. PubMed ID: 16992226
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The Mechanical Properties of
    Allen PD; Barclay JK
    Front Physiol; 2022; 13():862189. PubMed ID: 35733992
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines.
    Dennis RG; Kosnik PE; Gilbert ME; Faulkner JA
    Am J Physiol Cell Physiol; 2001 Feb; 280(2):C288-95. PubMed ID: 11208523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.