These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 779149)

  • 61. CNS glial cells support in vitro survival, division, and differentiation of dissociated olfactory neuronal progenitor cells.
    Pixley SK
    Neuron; 1992 Jun; 8(6):1191-204. PubMed ID: 1610570
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Development and distribution of gonadotropin-releasing hormone neuronal systems in the frog (Rana esculenta) brain: immunohistochemical analysis.
    D'Aniello B; Pinelli C; Di Fiore MM; Tela L; King JA; Rastogi RK
    Brain Res Dev Brain Res; 1995 Nov; 89(2):281-8. PubMed ID: 8612331
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A silver impregnation method for neurons in the central nervous system of the small laboratory animals.
    Ogawa Y
    Okajimas Folia Anat Jpn; 1992 May; 69(1):75-6. PubMed ID: 1620530
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A tangential neuronal migration in the olfactory bulbs of adult lizards.
    Peñafiel A; Gutiérrez A; Martín R; Mar Pérez-Cañellas M; de la Calle A
    Neuroreport; 1996 May; 7(7):1257-60. PubMed ID: 8817544
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Innervation of the pars intermedia of Rana esculenta and identification of aminergic fibers by autoradiography or electron microscopy].
    Doerr-Schott J; Follenius E
    Z Zellforsch Mikrosk Anat; 1970; 106(1):99-118. PubMed ID: 5449073
    [No Abstract]   [Full Text] [Related]  

  • 66. The bilateral bulbar projections of the primary olfactory neurons in the frog.
    Leveteau J; Andriason I; Mac Leod P
    Exp Brain Res; 1992; 89(1):93-104. PubMed ID: 1376279
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Distribution of proneuropeptide Y-derived peptides in the brain of Rana esculenta and Xenopus laevis.
    Lázár G; Maderdrut JL; Trasti SL; Liposits Z; Tóth P; Kozicz T; Merchenthaler I
    J Comp Neurol; 1993 Jan; 327(4):551-71. PubMed ID: 8440780
    [TBL] [Abstract][Full Text] [Related]  

  • 68. New ipsilateral visual units in the frog tectum.
    Gaillard F; Galand G
    Brain Res; 1977 Nov; 136(2):351-4. PubMed ID: 303534
    [No Abstract]   [Full Text] [Related]  

  • 69. The superficial glia limitans of mouse and monkey brain and spinal cord.
    Liu X; Zhang Z; Guo W; Burnstock G; He C; Xiang Z
    Anat Rec (Hoboken); 2013 Jul; 296(7):995-1007. PubMed ID: 23674345
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Identification of pericytes in the central nervous system by silver staining of the basal lamina.
    Bär T; Budi Santoso AW
    Cell Tissue Res; 1984; 236(2):491-3. PubMed ID: 6203648
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Olfactory projections in a chondrostean fish, Acipenser baeri: an experimental study.
    Huesa G; Anadón R; Yáñez J
    J Comp Neurol; 2000 Dec; 428(1):145-58. PubMed ID: 11058229
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Suppression of connective tissue impregnation in a silver technique for demonstrating nerve fibers.
    Herdman PR; Taylor JJ
    Stain Technol; 1975 Jan; 50(1):37-42. PubMed ID: 46635
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Localization of GnRH molecular forms in the brain, pituitary, and testis of the frog, Rana esculenta.
    Di Matteo L; Vallarino M; Pierantoni R
    J Exp Zool; 1996 Jan; 274(1):33-40. PubMed ID: 8583206
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Neurites from mouse retina and dorsal root ganglion explants show specific behavior within co-cultured tectum or spinal cord.
    Smalheiser NR; Peterson ER; Crain SM
    Brain Res; 1981 Mar; 208(2):499-505. PubMed ID: 7214158
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Origin and endpoint of the olfactory nerve fibers: as described by Santiago Ramón y Cajal.
    Levine C; Marcillo A
    Anat Rec (Hoboken); 2008 Jul; 291(7):741-50. PubMed ID: 18383279
    [TBL] [Abstract][Full Text] [Related]  

  • 76. On the development of bone marrow innervation in new-born rats as studied with silver impregnation and electron microscopy.
    Calvo W; Forteza-Vila J
    Am J Anat; 1969 Nov; 126(3):355-71. PubMed ID: 4188543
    [No Abstract]   [Full Text] [Related]  

  • 77. A comparison of sodium currents in rat and frog myelinated nerve: normal and modified sodium inactivation.
    Neumcke B; Schwarz JR; Stämpfli R
    J Physiol; 1987 Jan; 382():175-91. PubMed ID: 2442360
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Presentation of human neocortical neurons stained with the carbocyanine dye dil compared to the Golgi silver impregnation technique.
    Supprian T; Senitz D; Beckmann H
    J Hirnforsch; 1993; 34(3):403-6. PubMed ID: 7505791
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A reliable method for Golgi staining of retina and brain slices.
    Angulo A; Fernández E; Merchán JA; Molina M
    J Neurosci Methods; 1996 May; 66(1):55-9. PubMed ID: 8794940
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Central connections of the olfactory bulb in the bichir, Polypterus palmas, reexamined.
    von Bartheld CS; Meyer DL
    Cell Tissue Res; 1986; 244(3):527-35. PubMed ID: 2424609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.