These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 7791528)
1. Developmental regulation of sterol biosynthesis in Zea mays. Guo DA; Venkatramesh M; Nes WD Lipids; 1995 Mar; 30(3):203-19. PubMed ID: 7791528 [TBL] [Abstract][Full Text] [Related]
2. Sterol C-24 methyltransferase type 1 controls the flux of carbon into sterol biosynthesis in tobacco seed. Holmberg N; Harker M; Gibbard CL; Wallace AD; Clayton JC; Rawlins S; Hellyer A; Safford R Plant Physiol; 2002 Sep; 130(1):303-11. PubMed ID: 12226510 [TBL] [Abstract][Full Text] [Related]
3. Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis. Singh S; Pal S; Shanker K; Chanotiya CS; Gupta MM; Dwivedi UN; Shasany AK Physiol Plant; 2014 Dec; 152(4):617-33. PubMed ID: 24749735 [TBL] [Abstract][Full Text] [Related]
4. Spatial and temporal regulation of sterol biosynthesis in Nicotiana benthamiana. Suza WP; Chappell J Physiol Plant; 2016 Jun; 157(2):120-34. PubMed ID: 26671544 [TBL] [Abstract][Full Text] [Related]
5. Co-ordinate regulation of sterol biosynthesis enzyme activity during accumulation of sterols in developing rape and tobacco seed. Harker M; Hellyer A; Clayton JC; Duvoix A; Lanot A; Safford R Planta; 2003 Feb; 216(4):707-15. PubMed ID: 12569414 [TBL] [Abstract][Full Text] [Related]
6. Sterol-mediated regulation of mevalonic acid synthesis. Accumulation of 4-carboxysterols as the predominant sterols synthesized in a Chinese hamster ovary cell cholesterol auxotroph (mutant 215). Plemenitas A; Havel CM; Watson JA J Biol Chem; 1990 Oct; 265(28):17012-7. PubMed ID: 2211607 [TBL] [Abstract][Full Text] [Related]
7. Effect of high plant sterol-enriched diet and cholesterol absorption inhibitor, SCH 58235, on plant sterol absorption and plasma concentrations in hypercholesterolemic wild-type Kyoto rats. Batta AK; Xu G; Bollineni JS; Shefer S; Salen G Metabolism; 2005 Jan; 54(1):38-48. PubMed ID: 15562378 [TBL] [Abstract][Full Text] [Related]
8. [Possible role of acetyl-CoA-carboxylase in biosynthesis of mevalonic acid and sterols in rat liver]. Poliakova ED; Denisenko TV; Klimova TA; Dizhe EB; Petrova LA Biokhimiia; 1976 Jul; 41(6):1067-77. PubMed ID: 17434 [TBL] [Abstract][Full Text] [Related]
9. Effect of 4-(4'-chlorobenzyloxy)benzyl nicotinate (KCD-232) on cholesterol metabolism in rats. Okada K; Yagasaki K; Mochizuki T; Takagi K; Irikura T Biochem Pharmacol; 1985 Sep; 34(18):3361-7. PubMed ID: 4038342 [TBL] [Abstract][Full Text] [Related]
10. How is sterol synthesis regulated in higher plants? Goad LJ Biochem Soc Trans; 1983 Oct; 11(5):548-52. PubMed ID: 6642065 [No Abstract] [Full Text] [Related]
11. Up-regulation of an N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase enhances production of essential oils and sterols in transgenic Lavandula latifolia. Muñoz-Bertomeu J; Sales E; Ros R; Arrillaga I; Segura J Plant Biotechnol J; 2007 Nov; 5(6):746-58. PubMed ID: 17714440 [TBL] [Abstract][Full Text] [Related]
12. Sterol balance studies in the rat. Effects of dietary cholesterol and beta-sitosterol on sterol balance and rate-limiting enzymes of sterol metabolism. Raicht RF; Cohen BI; Shefer S; Mosbach EH Biochim Biophys Acta; 1975 Jun; 388(3):374-84. PubMed ID: 1137717 [TBL] [Abstract][Full Text] [Related]
13. [Activities of 3-hydroxyl-3-methylglutaryl-CoA reductase and acetyl-CoA carboxylase and the rate of mevalonic acid, squalene, sterol and fatty acid biosynthesis from [1-14C]acetyl-CoA and [2-14C]malonyl-CoA in rat liver: effects of Triton WR 1339, starvation and cholesterol diet]. Poliakova ED; Dizhe EB; Klimova TA; Denisenko TV; Vasil'eva LE Biokhimiia; 1981 Feb; 46(2):296-305. PubMed ID: 6113854 [TBL] [Abstract][Full Text] [Related]
14. Sterol composition and biosynthesis in sorghum: Importance to developmental regulation. Heupel RC; Sauvaire Y; Le PH; Parish EJ; Nes WD Lipids; 1986 Jan; 21(1):69-75. PubMed ID: 27519244 [TBL] [Abstract][Full Text] [Related]
15. Solving the Jigsaw puzzle of phytosterol diversity by a novel sterol methyltransferase from Zea mays. Gan Q; Zheng H; Li X; Li J; Ma J; Zhang Y; Han J; Zhang L; Zhou W; Lu Y J Steroid Biochem Mol Biol; 2024 Jun; 240():106498. PubMed ID: 38447903 [TBL] [Abstract][Full Text] [Related]
16. Sterol utilization and metabolism by Heliothis zea. Nes WD; Lopez M; Zhou W; Guo D; Dowd PF; Norton RA Lipids; 1997 Dec; 32(12):1317-23. PubMed ID: 9438243 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of cholesterol biosynthesis by Delta22-unsaturated phytosterols via competitive inhibition of sterol Delta24-reductase in mammalian cells. Fernández C; Suárez Y; Ferruelo AJ; Gómez-Coronado D; Lasunción MA Biochem J; 2002 Aug; 366(Pt 1):109-19. PubMed ID: 12162789 [TBL] [Abstract][Full Text] [Related]
19. Differences in concentrations of acetyl-CoA and malonyl-CoA in shoots and roots of Zea mays. Hayashi O; Satoh K Biosci Biotechnol Biochem; 2008 Mar; 72(3):865-7. PubMed ID: 18323644 [TBL] [Abstract][Full Text] [Related]
20. Variations in phytosterol composition during the ripening of Tunisian safflower (Carthamus tinctorius L.) seeds. Hamrouni-Sellami I; Salah HB; Kchouk ME; Marzouk B Pak J Biol Sci; 2007 Nov; 10(21):3829-34. PubMed ID: 19090237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]