BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 7791615)

  • 1. Transition state and multisubstrate analog inhibitors.
    Radzicka A; Wolfenden R
    Methods Enzymol; 1995; 249():284-312. PubMed ID: 7791615
    [No Abstract]   [Full Text] [Related]  

  • 2. Contrasting behavior of conformationally locked carbocyclic nucleosides of adenosine and cytidine as substrates for deaminases.
    Marquez VE; Schroeder GK; Ludek OR; Siddiqui MA; Ezzitouni A; Wolfenden R
    Nucleosides Nucleotides Nucleic Acids; 2009 May; 28(5):614-32. PubMed ID: 20183605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nucleoside deaminases for cytidine and adenosine: structure, transition state stabilization, mechanism, and evolution.
    Carter CW
    Biochimie; 1995; 77(1-2):92-8. PubMed ID: 7599282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into DNA deaminases.
    Conticello SG; Langlois MA; Neuberger MS
    Nat Struct Mol Biol; 2007 Jan; 14(1):7-9. PubMed ID: 17203067
    [No Abstract]   [Full Text] [Related]  

  • 5. Computational methods for transition state and inhibitor recognition.
    Braunheim BB; Schwartz SD
    Methods Enzymol; 1999; 308():398-426. PubMed ID: 10507012
    [No Abstract]   [Full Text] [Related]  

  • 6. Multisubstrate adduct inhibitors: drug design and biological tools.
    Le Calvez PB; Scott CJ; Migaud ME
    J Enzyme Inhib Med Chem; 2009 Dec; 24(6):1291-318. PubMed ID: 19912064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme-substrate complexes of adenosine and cytidine deaminases: absence of accumulation of water adducts.
    Shih P; Wolfenden R
    Biochemistry; 1996 Apr; 35(15):4697-703. PubMed ID: 8664259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism-based enzyme inactivators.
    Silverman RB
    Methods Enzymol; 1995; 249():240-83. PubMed ID: 7791614
    [No Abstract]   [Full Text] [Related]  

  • 9. Are there limits to enzyme-inhibitor binding discrimination? Inferences from the behavior of nucleoside deaminases.
    Wolfenden R
    Pharmacol Ther; 1993 Nov; 60(2):235-44. PubMed ID: 8022859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate connectivity effects in the transition state for cytidine deaminase.
    Carlow D; Wolfenden R
    Biochemistry; 1998 Aug; 37(34):11873-8. PubMed ID: 9718310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of compound recognition by adenosine deaminase.
    Kinoshita T; Nakanishi I; Terasaka T; Kuno M; Seki N; Warizaya M; Matsumura H; Inoue T; Takano K; Adachi H; Mori Y; Fujii T
    Biochemistry; 2005 Aug; 44(31):10562-9. PubMed ID: 16060665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epimer interconversion, isomerization, and hydrolysis of tetrahydrouridine: implications for cytidine deaminase inhibition.
    Xiang TX; Niemi R; Bummer P; Anderson BD
    J Pharm Sci; 2003 Oct; 92(10):2027-39. PubMed ID: 14502542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pre-transition-state mimic of an enzyme: X-ray structure of adenosine deaminase with bound 1-deazaadenosine and zinc-activated water.
    Wilson DK; Quiocho FA
    Biochemistry; 1993 Feb; 32(7):1689-94. PubMed ID: 8439534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flight of a cytidine deaminase complex with an imperfect transition state analogue inhibitor: mass spectrometric evidence for the presence of a trapped water molecule.
    Schroeder GK; Zhou L; Snider MJ; Chen X; Wolfenden R
    Biochemistry; 2012 Aug; 51(32):6476-86. PubMed ID: 22775299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-bound water and the shortcomings of a less than perfect transition state analogue.
    Snider MJ; Wolfenden R
    Biochemistry; 2001 Sep; 40(38):11364-71. PubMed ID: 11560484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct measurement of local and global contributions in the binding of coformycin to bovine adenosine deaminase.
    Strohmeyer EA; Beckley JR; Britt BM
    J Enzyme Inhib Med Chem; 2002 Apr; 17(2):77-86. PubMed ID: 12420753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic Transition States and Drug Design.
    Schramm VL
    Chem Rev; 2018 Nov; 118(22):11194-11258. PubMed ID: 30335982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic transition states and transition state analog design.
    Schramm VL
    Annu Rev Biochem; 1998; 67():693-720. PubMed ID: 9759501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Practical robust fit of enzyme inhibition data.
    Kuzmic P; Hill C; Janc JW
    Methods Enzymol; 2004; 383():366-81. PubMed ID: 15063658
    [No Abstract]   [Full Text] [Related]  

  • 20. Enzymatic transition states: thermodynamics, dynamics and analogue design.
    Schramm VL
    Arch Biochem Biophys; 2005 Jan; 433(1):13-26. PubMed ID: 15581562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.