BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 7791746)

  • 1. Na(+)-Ca2+ exchange and Ca2+ channel characteristics in bovine aorta and coronary artery smooth muscle sarcolemmal membranes.
    Docherty JC; Maddaford TG; Dubo DF; Choptain NL; Pierce GN
    Mol Cell Biochem; 1995 Mar; 144(1):61-6. PubMed ID: 7791746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High levels of sodium-calcium exchange in vascular smooth muscle sarcolemmal membrane vesicles.
    Slaughter RS; Shevell JL; Felix JP; Garcia ML; Kaczorowski GJ
    Biochemistry; 1989 May; 28(9):3995-4002. PubMed ID: 2752004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na+-Ca2+ exchange in sarcolemmal membrane vesicles of dog mesenteric artery.
    Matlib MA
    Am J Physiol; 1988 Sep; 255(3 Pt 1):C323-30. PubMed ID: 3421315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na+-Ca2+ exchange in sarcolemmal vesicles from bovine superior mesenteric artery.
    Kahn AM; Allen JC; Shelat H
    Am J Physiol; 1988 Mar; 254(3 Pt 1):C441-9. PubMed ID: 2831733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium-lithium exchange and sodium-proton exchange are mediated by the same transport system in sarcolemmal vesicles from bovine superior mesenteric artery.
    Kahn AM; Allen JC; Cragoe EJ; Shelat H
    Circ Res; 1989 Sep; 65(3):818-28. PubMed ID: 2548766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of phosphatidylinositol in cardiac sarcolemmal membrane sodium-calcium exchange.
    Pierce GN; Panagia V
    J Biol Chem; 1989 Sep; 264(26):15344-50. PubMed ID: 2549059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of purified bovine cardiac sarcolemma and potassium-stimulated calcium uptake.
    Flockerzi V; Mewes R; Ruth P; Hofmann F
    Eur J Biochem; 1983 Sep; 135(1):131-42. PubMed ID: 6309517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role for sulfur-containing groups in the Na+-Ca2+ exchange of cardiac sarcolemmal vesicles.
    Pierce GN; Ward R; Philipson KD
    J Membr Biol; 1986; 94(3):217-25. PubMed ID: 3560203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation of heart sarcolemmal Na+-Ca2+ exchange by concanavalin A.
    Makino N; Zhao D; Dhalla NS
    Biochem Biophys Res Commun; 1988 Jul; 154(1):245-51. PubMed ID: 3395327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium-calcium exchange in sarcolemmal vesicles from tracheal smooth muscle.
    Slaughter RS; Welton AF; Morgan DW
    Biochim Biophys Acta; 1987 Nov; 904(1):92-104. PubMed ID: 2822116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Na+-Ca2+ exchange process in isolated sarcolemmal membranes of mesenteric arteries from WKY and SHR rats.
    Matlib MA; Schwartz A; Yamori Y
    Am J Physiol; 1985 Jul; 249(1 Pt 1):C166-72. PubMed ID: 2990226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Na+-Ca2+ exchange system in vascular smooth muscle cell membrane vesicles isolated from cultured cells and from tissue is similar.
    Matlib MA; Kihara M; Farrell C; Dage RC
    Biochim Biophys Acta; 1988 Mar; 939(1):173-7. PubMed ID: 3349079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations by saponins of passive Ca2+ permeability and Na+-Ca2+ exchange activity of canine cardiac sarcolemmal vesicles.
    Yamasaki Y; Ito K; Enomoto Y; Sutko JL
    Biochim Biophys Acta; 1987 Mar; 897(3):481-7. PubMed ID: 3814597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysophosphatidylcholine and sodium-calcium exchange in cardiac sarcolemma: comparison with ischemia.
    Bersohn MM; Philipson KD; Weiss RS
    Am J Physiol; 1991 Mar; 260(3 Pt 1):C433-8. PubMed ID: 2003570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of sarcolemmal sodium-calcium exchange and intracellular calcium release to force development in isolated canine ventricular muscle.
    Bouchard RA; Bose D
    J Gen Physiol; 1992 Jun; 99(6):931-60. PubMed ID: 1640221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phospholipid composition modulates the Na+-Ca2+ exchange activity of cardiac sarcolemma in reconstituted vesicles.
    Vemuri R; Philipson KD
    Biochim Biophys Acta; 1988 Jan; 937(2):258-68. PubMed ID: 3276350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation energy of the cardiac Na+/Ca2+ exchanger in sarcolemmal vesicles and reconstituted proteoliposomes.
    Dalla Serra M; Pederzolli C; Antolini R; Cusinato F; Luciani S; Menestrina G
    Cardioscience; 1991 Sep; 2(3):193-7. PubMed ID: 1742469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sarcolemmal Ca2+ transport activities in cardiac hypertrophy caused by pressure overload.
    Nakanishi H; Makino N; Hata T; Matsui H; Yano K; Yanaga T
    Am J Physiol; 1989 Aug; 257(2 Pt 2):H349-56. PubMed ID: 2548404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+/Ca2+ exchange of isolated sarcolemmal membrane: effects of insulin, oxidants and insulin deficiency.
    Kato M; Kako KJ
    Mol Cell Biochem; 1988 Sep; 83(1):15-25. PubMed ID: 2851714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dihydropyridine binding to the L-type Ca2+ channel in rabbit heart sarcolemma and skeletal muscle transverse-tubules: role of disulfide, sulfhydryl and phosphate groups.
    Murphy BJ; Washkurak AW; Tuana BS
    Biochim Biophys Acta; 1990 May; 1052(2):333-9. PubMed ID: 2159349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.