These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 7792081)

  • 21. Cortical substrates of taste aversion learning: involvement of dorsolateral amygdaloid nuclei and temporal neocortex in taste aversion learning.
    Lasiter PS; Glanzman DL
    Behav Neurosci; 1985 Apr; 99(2):257-76. PubMed ID: 3843711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brainstem lesions and gustatory function: III. The role of the nucleus of the solitary tract and the parabrachial nucleus in retention of a conditioned taste aversion in rats.
    Grigson PS; Shimura T; Norgren R
    Behav Neurosci; 1997 Feb; 111(1):180-7. PubMed ID: 9109636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Double dissociations of the effects of amygdala and insular cortex lesions on conditioned taste aversion, passive avoidance, and neophobia in the rat using the excitotoxin ibotenic acid.
    Dunn LT; Everitt BJ
    Behav Neurosci; 1988 Feb; 102(1):3-23. PubMed ID: 3281693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Central gustatory lesions and learned taste aversions: unconditioned stimuli.
    Mungarndee SS; Lundy RF; Norgren R
    Physiol Behav; 2006 Mar; 87(3):542-51. PubMed ID: 16458940
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kindling increases aversion to saccharin in taste aversion learning.
    López-Velázquez L; Aguirre E; Paredes RG
    Neuroscience; 2007 Feb; 144(3):808-14. PubMed ID: 17140739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Short-term and long-term excitability changes of the insular cortical neurons after the acquisition of taste aversion learning in behaving rats.
    Yasoshima Y; Yamamoto T
    Neuroscience; 1998 May; 84(1):1-5. PubMed ID: 9522356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activation of efferents from the basolateral amygdala during the retrieval of conditioned taste aversion.
    Inui T; Inui-Yamamoto C; Yoshioka Y; Ohzawa I; Shimura T
    Neurobiol Learn Mem; 2013 Nov; 106():210-20. PubMed ID: 24055778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ibotenic acid lesions of the basolateral, but not the central, amygdala interfere with conditioned taste aversion: evidence from a combined behavioral and anatomical tract-tracing investigation.
    Morris R; Frey S; Kasambira T; Petrides M
    Behav Neurosci; 1999 Apr; 113(2):291-302. PubMed ID: 10357454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuroanatomical and functional specificity of the basolateral amygdaloid nucleus in taste-potentiated odor aversion.
    Ferry B; Sandner G; Di Scala G
    Neurobiol Learn Mem; 1995 Sep; 64(2):169-80. PubMed ID: 7582825
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic processing of taste aversion extinction in the brain.
    Mickley GA; Kenmuir CL; McMullen CA; Yocom AM; Valentine EL; Dengler-Crish CM; Weber B; Wellman JA; Remmers-Roeber DR
    Brain Res; 2004 Jul; 1016(1):79-89. PubMed ID: 15234255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of excitotoxic lesions of the gustatory thalamus on latent inhibition and blocking of conditioned taste aversion in rats.
    Reilly S; Bornovalova M; Dengler C; Trifunovic R
    Brain Res Bull; 2003 Dec; 62(2):117-28. PubMed ID: 14638385
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabotropic glutamate receptor antagonists but not NMDA antagonists affect conditioned taste aversion acquisition in the parabrachial nucleus of rats.
    Vales K; Zach P; Bielavska E
    Exp Brain Res; 2006 Feb; 169(1):50-7. PubMed ID: 16273405
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parabrachial-hypothalamic interactions are required for normal conditioned taste aversions.
    Dayawansa S; Ruch S; Norgren R
    Am J Physiol Regul Integr Comp Physiol; 2014 Feb; 306(3):R190-200. PubMed ID: 24259462
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conditioning method determines patterns of c-fos expression following novel taste-illness pairing.
    Wilkins EE; Bernstein IL
    Behav Brain Res; 2006 Apr; 169(1):93-7. PubMed ID: 16427145
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Artificial taste avoidance memory induced by coactivation of NMDA and β-adrenergic receptors in the amygdala.
    Osorio-Gómez D; Bermúdez-Rattoni F; Guzmán-Ramos K
    Behav Brain Res; 2019 Dec; 376():112193. PubMed ID: 31473281
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophysiological analysis of conditioned taste aversion in rats.
    Brozek G
    Acta Neurobiol Exp (Wars); 1982; 42(1):29-41. PubMed ID: 6295072
    [TBL] [Abstract][Full Text] [Related]  

  • 37. cAMP response element-binding protein in the amygdala is required for long- but not short-term conditioned taste aversion memory.
    Lamprecht R; Hazvi S; Dudai Y
    J Neurosci; 1997 Nov; 17(21):8443-50. PubMed ID: 9334416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of central and basolateral amygdala lesions on conditioned taste aversion and latent inhibition.
    St Andre J; Reilly S
    Behav Neurosci; 2007 Feb; 121(1):90-9. PubMed ID: 17324053
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glutamate in the parabrachial nucleus of rats during conditioned taste aversion.
    Bielavska E; Miksik I; Krivanek J
    Brain Res; 2000 Dec; 887(2):413-7. PubMed ID: 11134632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ketamine blocks a conditioned taste aversion (CTA) in neonatal rats.
    Mickley GA; Schaldach MA; Snyder KJ; Balogh SA; Len T; Neimanis K; Goulis P; Hug J; Sauchak K; Remmers-Roeber DR; Walker C; Yamamoto BK
    Physiol Behav; 1998 Jun; 64(3):381-90. PubMed ID: 9748108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.