BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 7792084)

  • 1. Discrete acetylcholine release from neuroblastoma or hybrid cells overexpressing choline acetyltransferase into the neuromuscular synaptic cleft.
    Zhong ZG; Kimura Y; Noda M; Misawa H; Higashida H
    Neurosci Res; 1995 Mar; 22(1):81-8. PubMed ID: 7792084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced acetylcholine secretion in neuroblastoma x glioma hybrid NG108-15 cells transfected with rat choline acetyltransferase cDNA.
    Kimura Y; Oda Y; Deguchi T; Higashida H
    FEBS Lett; 1992 Dec; 314(3):409-12. PubMed ID: 1468577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of choline acetyltransferase reconstitutes discrete acetylcholine release in some but not all synapse formation-defective neuroblastoma cells.
    Zhong ZG; Misawa H; Furuya S; Kimura Y; Noda M; Yokoyama S; Higashida H
    J Physiol Paris; 1995; 89(3):137-45. PubMed ID: 7581303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of rat neuronal calcium sensor-1 in rodent NG108-15 cells enhances synapse formation and transmission.
    Chen XL; Zhong ZG; Yokoyama S; Bark C; Meister B; Berggren PO; Roder J; Higashida H; Jeromin A
    J Physiol; 2001 May; 532(Pt 3):649-59. PubMed ID: 11313436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of adhesion molecule L1 in NG108-15 neuroblastoma X glioma hybrid cells enhances dibutyryl cyclic AMP-induced neurite outgrowth and functional synapse formation with myotubes.
    Zhong ZG; Yokoyama S; Noda M; Higashida H
    J Neurochem; 1997 Jun; 68(6):2291-9. PubMed ID: 9166721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bradykinin-evoked acetylcholine release via inositol trisphosphate-dependent elevation in free calcium in neuroblastoma x glioma hybrid NG108-15 cells.
    Ogura A; Myojo Y; Higashida H
    J Biol Chem; 1990 Feb; 265(6):3577-84. PubMed ID: 2303464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylcholine release by bradykinin, inositol 1,4,5-trisphosphate and phorbol dibutyrate in rodent neuroblastoma cells.
    Higashida H
    J Physiol; 1988 Mar; 397():209-22. PubMed ID: 2842493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evoked acetylcholine release by immortalized brain endothelial cells genetically modified to express choline acetyltransferase and/or the vesicular acetylcholine transporter.
    Malo M; Diebler MF; Prado de Carvalho L; Meunier FM; Dunant Y; Bloc A; Stinnakre J; Tomasi M; Tchélingérian J; Couraud PO; Israël M
    J Neurochem; 1999 Oct; 73(4):1483-91. PubMed ID: 10501193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium-independent release of acetylcholine from stable cell lines expressing mouse choline acetyltransferase cDNA.
    Misawa H; Takahashi R; Deguchi T
    J Neurochem; 1994 Feb; 62(2):465-70. PubMed ID: 8294908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetylcholine synthesis and quantal release reconstituted by transfection of mediatophore and choline acetyltranferase cDNAs.
    Bloc A; Bugnard E; Dunant Y; Falk-Vairant J; Israël M; Loctin F; Roulet E
    Eur J Neurosci; 1999 May; 11(5):1523-34. PubMed ID: 10215905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single class of neurotensin receptors with high affinity in neuroblastoma X glioma NG108-15 hybrid cells that mediate facilitation of synaptic transmission.
    Nakagawa Y; Higashida H; Miki N
    J Neurosci; 1984 Jun; 4(6):1653-61. PubMed ID: 6327939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular acetylcholine content and neuronal differentiation.
    Bignami F; Bevilacqua P; Biagioni S; De Jaco A; Casamenti F; Felsani A; Augusti-Tocco G
    J Neurochem; 1997 Oct; 69(4):1374-81. PubMed ID: 9326265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Choline uptake by the neuroblastoma x glioma hybrid, NG108-15.
    McGee R
    J Neurochem; 1980 Oct; 35(4):829-37. PubMed ID: 6256499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of uptake and release of newly synthesized acetylcholine in PC12 cells overexpressing the rat vesicular acetylcholine transporter (VAChT).
    Roghani A; Carroll PT
    Brain Res Mol Brain Res; 2002 Apr; 100(1-2):21-30. PubMed ID: 12008018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Release and synthesis of acetylcholine at ectopic neuromuscular junctions in the rat.
    van Kempen GT; Molenaar PC; Slater CR
    J Physiol; 1994 Jul; 478 ( Pt 2)(Pt 2):229-38. PubMed ID: 7965844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotype dependent differential effects of interleukin-1beta and amyloid-beta on viability and cholinergic phenotype of T17 neuroblastoma cells.
    Bielarczyk H; Jankowska-Kulawy A; Gul S; Pawełczyk T; Szutowicz A
    Neurochem Int; 2005 Dec; 47(7):466-73. PubMed ID: 16122837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synapse formation between two clonal cell lines.
    Christian CN; Nelson PG; Peacock J; Nirenberg M
    Science; 1977 May; 196(4293):995-8. PubMed ID: 193191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facilitation of synaptic transmission by prostaglandin D2 at synapses between NG108-15 hybrid and muscle cells.
    Higashida H; Nakagawa Y; Miki N
    Brain Res; 1984 Mar; 295(1):113-9. PubMed ID: 6324947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the mechanism of M-current inhibition by muscarinic m1 receptors in DNA-transfected rodent neuroblastoma x glioma cells.
    Robbins J; Marsh SJ; Brown DA
    J Physiol; 1993 Sep; 469():153-78. PubMed ID: 8271196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional regulation of choline acetyltransferase gene by cyclic AMP.
    Misawa H; Takahashi R; Deguchi T
    J Neurochem; 1993 Apr; 60(4):1383-7. PubMed ID: 8384248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.