BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 7792098)

  • 1. Suppressor macrophages in Trypanosoma brucei infection: nitric oxide is related to both suppressive activity and lifespan in vivo.
    Mabbott NA; Sutherland IA; Sternberg JM
    Parasite Immunol; 1995 Mar; 17(3):143-50. PubMed ID: 7792098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide mediates suppression of T cell responses in murine Trypanosoma brucei infection.
    Sternberg J; McGuigan F
    Eur J Immunol; 1992 Oct; 22(10):2741-4. PubMed ID: 1396977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide-mediated suppression of T cell responses during Trypanosoma brucei infection: soluble trypanosome products and interferon-gamma are synergistic inducers of nitric oxide synthase.
    Sternberg MJ; Mabbott NA
    Eur J Immunol; 1996 Mar; 26(3):539-43. PubMed ID: 8605918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppressive macrophages occurring in murine Trypanosoma brucei infection inhibit T-cell responses in vivo and in vitro.
    Borowy NK; Sternberg JM; Schreiber D; Nonnengasser C; Overath P
    Parasite Immunol; 1990 May; 12(3):233-46. PubMed ID: 2143570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trypanosoma brucei infection elicits nitric oxide-dependent and nitric oxide-independent suppressive mechanisms.
    Beschin A; Brys L; Magez S; Radwanska M; De Baetselier P
    J Leukoc Biol; 1998 Apr; 63(4):429-39. PubMed ID: 9544572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppressor macrophages in African trypanosomiasis inhibit T cell proliferative responses by nitric oxide and prostaglandins.
    Schleifer KW; Mansfield JM
    J Immunol; 1993 Nov; 151(10):5492-503. PubMed ID: 8228241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trypanosoma brucei is protected from the cytostatic effects of nitric oxide under in vivo conditions.
    Mabbott NA; Sutherland IA; Sternberg JM
    Parasitol Res; 1994; 80(8):687-90. PubMed ID: 7886039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppressor cells in mice infected with Trypanosoma brucei.
    Eardley DD; Jayawardena AN
    J Immunol; 1977 Sep; 119(3):1029-33. PubMed ID: 302268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mouse strain susceptibility to trypanosome infection: an arginase-dependent effect.
    Duleu S; Vincendeau P; Courtois P; Semballa S; Lagroye I; Daulouède S; Boucher JL; Wilson KT; Veyret B; Gobert AP
    J Immunol; 2004 May; 172(10):6298-303. PubMed ID: 15128819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Murine T lymphocyte specificity for African trypanosomes. II. Suppression of the T lymphocyte proliferative response to Trypanosoma brucei by systemic trypanosome infection.
    Gasbarre LC; Hug K; Louis J
    Clin Exp Immunol; 1981 Jul; 45(1):165-72. PubMed ID: 6458434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T-lymphocyte requirement for the induction of mouse macrophage procoagulant activity by Trypanosoma brucei.
    Rossi BC; Dean RT; Terry RJ
    Parasite Immunol; 1987 Nov; 9(6):697-704. PubMed ID: 3501564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppressor factor of T-cell activation and decreased interleukin 2 activity in experimental African trypanosomiasis.
    Alcina A; Fresno M
    Infect Immun; 1985 Nov; 50(2):382-7. PubMed ID: 3876993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative versus classical macrophage activation during experimental African trypanosomosis.
    Namangala B; De Baetselier P; Noël W; Brys L; Beschin A
    J Leukoc Biol; 2001 Mar; 69(3):387-96. PubMed ID: 11261785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L-Arginine availability modulates local nitric oxide production and parasite killing in experimental trypanosomiasis.
    Gobert AP; Daulouede S; Lepoivre M; Boucher JL; Bouteille B; Buguet A; Cespuglio R; Veyret B; Vincendeau P
    Infect Immun; 2000 Aug; 68(8):4653-7. PubMed ID: 10899869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of macrophage-derived nitric oxide in suppression of lymphocyte proliferation during blood-stage malaria.
    Ahvazi BC; Jacobs P; Stevenson MM
    J Leukoc Biol; 1995 Jul; 58(1):23-31. PubMed ID: 7542305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active suppression of interleukin 2 secretion in mice infected with Trypanosoma brucei AnTat 1.1.E.
    Sileghem M; Hamers R; De Baetselier P
    Parasite Immunol; 1986 Nov; 8(6):641-9. PubMed ID: 2880330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a parasitic immunomodulatory protein triggering the development of suppressive M1 macrophages during African trypanosomiasis.
    Gómez-Rodríguez J; Stijlemans B; De Muylder G; Korf H; Brys L; Berberof M; Darji A; Pays E; De Baetselier P; Beschin A
    J Infect Dis; 2009 Dec; 200(12):1849-60. PubMed ID: 19911988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Murine T lymphocyte specificity for African trypanosomes. I. Induction of a T lymphocyte-dependent proliferative response to Trypanosoma brucei.
    Gasbarre LC; Hug K; Louis JA
    Clin Exp Immunol; 1980 Jul; 41(1):97-106. PubMed ID: 6160003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide production by splenic macrophages is not responsible for T cell suppression during acute infection with lactate dehydrogenase-elevating virus.
    Rowland RR; Butz EA; Plagemann PG
    J Immunol; 1994 Jun; 152(12):5785-95. PubMed ID: 8207208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide synthesis is depressed in Bos indicus cattle infected with Trypanosoma congolense and Trypanosoma vivax and does not mediate T-cell suppression.
    Taylor K; Lutje V; Mertens B
    Infect Immun; 1996 Oct; 64(10):4115-22. PubMed ID: 8926077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.