These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7792252)

  • 21. Ultrastructure of pigment cells in wild type and color mutants of the Mexican axolotl.
    Dunson MK
    Cell Tissue Res; 1974; 151(2):259-68. PubMed ID: 4140038
    [No Abstract]   [Full Text] [Related]  

  • 22. Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards.
    Saenko SV; Teyssier J; van der Marel D; Milinkovitch MC
    BMC Biol; 2013 Oct; 11():105. PubMed ID: 24099066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Blue Coloration of the Common Surgeonfish, Paracanthurus hepatus-II. Color Revelation and Color Changes.
    Goda M; Fujii R
    Zoolog Sci; 1998 Jun; 15(3):323-33. PubMed ID: 18465994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reflective properties of iridophores and fluorescent 'eyespots' in the loliginid squid Alloteuthis subulata and Loligo vulgaris.
    Mäthger LM; Denton EJ
    J Exp Biol; 2001 Jun; 204(Pt 12):2103-18. PubMed ID: 11441052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochemical characterization of crystals from the dermal iridophores of a chameleon Anolis carolinensis.
    Rohrlich ST; Rubin RW
    J Cell Biol; 1975 Sep; 66(3):635-45. PubMed ID: 1167183
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The dermal chromatophore unit.
    Bagnara JT; Taylor JD; Hadley ME
    J Cell Biol; 1968 Jul; 38(1):67-79. PubMed ID: 5691979
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms for Color Convergence in a Mimetic Radiation of Poison Frogs.
    Twomey E; Kain M; Claeys M; Summers K; Castroviejo-Fisher S; Van Bocxlaer I
    Am Nat; 2020 May; 195(5):E132-E149. PubMed ID: 32364784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ differentiation of iridophore crystallotypes underlies zebrafish stripe patterning.
    Gur D; Bain EJ; Johnson KR; Aman AJ; Pasolli HA; Flynn JD; Allen MC; Deheyn DD; Lee JC; Lippincott-Schwartz J; Parichy DM
    Nat Commun; 2020 Dec; 11(1):6391. PubMed ID: 33319779
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The pigmentary system of developing axolotls. I. A biochemical and structural analysis of chromatophores in wild-type axolotls.
    Frost SK; Epp LG; Robinson SJ
    J Embryol Exp Morphol; 1984 Jun; 81():105-25. PubMed ID: 6470605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of muscarinic receptors and intracellular Ca2+ in the spectral reflectivity changes of squid iridophores.
    Mäthger LM; Collins TF; Lima PA
    J Exp Biol; 2004 May; 207(Pt 11):1759-69. PubMed ID: 15107431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Divisionistic generation of skin hue and the change of shade in the scalycheek damselfish, Pomacentrus lepidogenys.
    Kasukawa H; Oshima N
    Pigment Cell Res; 1987; 1(3):152-7. PubMed ID: 3508273
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stimulation of cultured iridophores by amphibian ventral conditioned medium.
    Bagnara JT; Fukuzawa T
    Pigment Cell Res; 1990 Nov; 3(5):243-50. PubMed ID: 2095576
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid colour changes in multilayer reflecting stripes in the paradise whiptail, Pentapodus paradiseus.
    Mäthger LM; Land MF; Siebeck UE; Marshall NJ
    J Exp Biol; 2003 Oct; 206(Pt 20):3607-13. PubMed ID: 12966052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The pigmentary system of developing axolotls. II. An analysis of the melanoid phenotype.
    Frost SK; Epp LG; Robinson SJ
    J Embryol Exp Morphol; 1984 Jun; 81():127-42. PubMed ID: 6470606
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Localization of pigment cells in cultured frog skin.
    Denefle JP; Lechaire JP
    Am J Anat; 1990 Jun; 188(2):212-20. PubMed ID: 2375284
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lizards exploit the changing optics of developing chromatophore cells to switch defensive colors during ontogeny.
    Zhang G; Yallapragada VJ; Halperin T; Wagner A; Shemesh M; Upcher A; Pinkas I; McClelland HLO; Hawlena D; Palmer BA
    Proc Natl Acad Sci U S A; 2023 May; 120(18):e2215193120. PubMed ID: 37104475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intermediate filaments spatially organize intracellular nanostructures to produce the bright structural blue of ribbontail stingrays across ontogeny.
    Blumer MJ; Surapaneni VA; Ciecierska-Holmes J; Redl S; Pechriggl EJ; Mollen FH; Dean MN
    Front Cell Dev Biol; 2024; 12():1393237. PubMed ID: 39050893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The pigmentary system of developing axolotls. IV. An analysis of the axanthic phenotype.
    Frost SK; Epp LG; Robinson SJ
    J Embryol Exp Morphol; 1986 Jun; 95():117-30. PubMed ID: 3794587
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iridophores and not carotenoids account for chromatic variation of carotenoid-based coloration in common lizards (Lacerta vivipara).
    San-Jose LM; Granado-Lorencio F; Sinervo B; Fitze PS
    Am Nat; 2013 Mar; 181(3):396-409. PubMed ID: 23448888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Developmental and comparative transcriptomic identification of iridophore contribution to white barring in clownfish.
    Salis P; Lorin T; Lewis V; Rey C; Marcionetti A; Escande ML; Roux N; Besseau L; Salamin N; Sémon M; Parichy D; Volff JN; Laudet V
    Pigment Cell Melanoma Res; 2019 May; 32(3):391-402. PubMed ID: 30633441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.