These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 7793641)
1. Ferrireductase activity in Saccharomyces cerevisiae and other fungi: colorimetric assays on agar plates. Lesuisse E; Casteras-Simon M; Labbe P Anal Biochem; 1995 Apr; 226(2):375-7. PubMed ID: 7793641 [No Abstract] [Full Text] [Related]
2. Evidence for the Saccharomyces cerevisiae ferrireductase system being a multicomponent electron transport chain. Lesuisse E; Casteras-Simon M; Labbe P J Biol Chem; 1996 Jun; 271(23):13578-83. PubMed ID: 8662826 [TBL] [Abstract][Full Text] [Related]
3. The plasma membrane ferrireductase activity of Saccharomyces cerevisiae is partially controlled by cyclic AMP. Lesuisse E; Horion B; Labbe P; Hilger F Biochem J; 1991 Dec; 280 ( Pt 2)(Pt 2):545-8. PubMed ID: 1660715 [TBL] [Abstract][Full Text] [Related]
4. Iron-reductases in the yeast Saccharomyces cerevisiae. Lesuisse E; Crichton RR; Labbe P Biochim Biophys Acta; 1990 Apr; 1038(2):253-9. PubMed ID: 2184897 [TBL] [Abstract][Full Text] [Related]
5. Cytochrome P-450 reductase is responsible for the ferrireductase activity associated with isolated plasma membranes of Saccharomyces cerevisiae. Lesuisse E; Casteras-Simon M; Labbe P FEMS Microbiol Lett; 1997 Nov; 156(1):147-52. PubMed ID: 9368374 [TBL] [Abstract][Full Text] [Related]
6. Ferric iron reduction and iron assimilation in Saccharomyces cerevisiae. Anderson GJ; Lesuisse E; Dancis A; Roman DG; Labbe P; Klausner RD J Inorg Biochem; 1992 Aug 15-Sep; 47(3-4):249-55. PubMed ID: 1431884 [TBL] [Abstract][Full Text] [Related]
7. The mammalian transferrin-independent iron transport system may involve a surface ferrireductase activity. Jordan I; Kaplan J Biochem J; 1994 Sep; 302 ( Pt 3)(Pt 3):875-9. PubMed ID: 7945215 [TBL] [Abstract][Full Text] [Related]
8. The ferrireductase paraferritin contains divalent metal transporter as well as mobilferrin. Umbreit JN; Conrad ME; Hainsworth LN; Simovich M Am J Physiol Gastrointest Liver Physiol; 2002 Mar; 282(3):G534-9. PubMed ID: 11842004 [TBL] [Abstract][Full Text] [Related]
9. Iron metabolism in eukaryotes: Mars and Venus at it again. Kaplan J; O'Halloran TV Science; 1996 Mar; 271(5255):1510-2. PubMed ID: 8599104 [No Abstract] [Full Text] [Related]
10. Colorimetric assays for screening laccases. Alcalde M; Bulter T Methods Mol Biol; 2003; 230():193-201. PubMed ID: 12824583 [No Abstract] [Full Text] [Related]
11. Reduction and mobilization of iron by a NAD(P)H:flavin oxidoreductase from Escherichia coli. Coves J; Fontecave M Eur J Biochem; 1993 Feb; 211(3):635-41. PubMed ID: 8436123 [TBL] [Abstract][Full Text] [Related]
12. Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae. Lesuisse E; Labbe P J Gen Microbiol; 1989 Feb; 135(2):257-63. PubMed ID: 11699493 [TBL] [Abstract][Full Text] [Related]
13. Ferrous binding to the multicopper oxidases Saccharomyces cerevisiae Fet3p and human ceruloplasmin: contributions to ferroxidase activity. Quintanar L; Gebhard M; Wang TP; Kosman DJ; Solomon EI J Am Chem Soc; 2004 Jun; 126(21):6579-89. PubMed ID: 15161286 [TBL] [Abstract][Full Text] [Related]
14. Regulation of iron uptake in Saccharomyces cerevisiae. The ferrireductase and Fe(II) transporter are regulated independently. Eide D; Davis-Kaplan S; Jordan I; Sipe D; Kaplan J J Biol Chem; 1992 Oct; 267(29):20774-81. PubMed ID: 1400393 [TBL] [Abstract][Full Text] [Related]
15. Studies on the microsomal electron-transport system of anaerobically grown yeast. I. Intracellular localization and characterization. Yoshida Y; Kumaoka H; Sato R J Biochem; 1974 Jun; 75(6):1201-10. PubMed ID: 4154327 [No Abstract] [Full Text] [Related]
16. Ferric iron reduction and iron uptake in eucaryotes: studies with the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Anderson GJ; Dancis A; Roman DG; Klausner RD Adv Exp Med Biol; 1994; 356():81-9. PubMed ID: 7887248 [No Abstract] [Full Text] [Related]
17. Characterization and partial purification of a ferrireductase from human duodenal microvillus membranes. Riedel HD; Remus AJ; Fitscher BA; Stremmel W Biochem J; 1995 Aug; 309 ( Pt 3)(Pt 3):745-8. PubMed ID: 7639688 [TBL] [Abstract][Full Text] [Related]
18. Kinetic evidence for two sites in the inhibition by diuron of the electron transport in the bc1 segment of the respiratory chain in Saccharomyces cerevisiae. Convent B; Briquet M; Goffeau A Eur J Biochem; 1978 Dec; 92(1):137-45. PubMed ID: 365530 [No Abstract] [Full Text] [Related]
19. Characterization of a membrane-bound NADH-dependent Fe(3+) reductase from the dissimilatory Fe(3+)-reducing bacterium Geobacter sulfurreducens. Magnuson TS; Hodges-Myerson AL; Lovley DR FEMS Microbiol Lett; 2000 Apr; 185(2):205-11. PubMed ID: 10754249 [TBL] [Abstract][Full Text] [Related]
20. Hydrogen peroxide formation and iron ion oxidoreduction linked to NADH oxidation in radish plasmalemma vesicles. Vianello A; Zancani M; Macrà F Biochim Biophys Acta; 1990 Mar; 1023(1):19-24. PubMed ID: 2156562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]