These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 7793641)

  • 21. Reduction of Fe(III) is required for uptake of nonheme iron by Caco-2 cells.
    Han O; Failla ML; Hill AD; Morris ER; Smith JC
    J Nutr; 1995 May; 125(5):1291-9. PubMed ID: 7738689
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differences in Fe(III) reduction in the hyperthermophilic archaeon, Pyrobaculum islandicum, versus mesophilic Fe(III)-reducing bacteria.
    Childers SE; Lovley DR
    FEMS Microbiol Lett; 2001 Feb; 195(2):253-8. PubMed ID: 11179660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of heme and vacuole deficiency on FRE1 gene expression and ferrireductase activity in Saccharomyces cerevisiae.
    Amillet JM; Galiazzo F; Labbe-Bois R
    FEMS Microbiol Lett; 1996 Mar; 137(1):25-9. PubMed ID: 8935653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ferric and cupric reductase activities by iron-limited cells of the green alga Chlorella kessleri: quantification via oxygen electrode.
    Weger HG; Walker CN; Fink MB
    Physiol Plant; 2007 Oct; 131(2):322-31. PubMed ID: 18251903
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interference of ferric ions with ferrous iron quantification using the ferrozine assay.
    Im J; Lee J; Löffler FE
    J Microbiol Methods; 2013 Dec; 95(3):366-7. PubMed ID: 24140574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reductive titration of CoQ-depleted Complex III from Baker's yeast. Evidence for an exchange-coupled complex between QH . and low-spin ferricytochrome b.
    de la Rosa FF; Palmer G
    FEBS Lett; 1983 Oct; 163(1):140-3. PubMed ID: 6313430
    [No Abstract]   [Full Text] [Related]  

  • 27. Kinetic characterization of the rotenone-insensitive internal NADH: ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae.
    Velázquez I; Pardo JP
    Arch Biochem Biophys; 2001 May; 389(1):7-14. PubMed ID: 11370674
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbiology. Feasting on minerals.
    Newman DK
    Science; 2010 Feb; 327(5967):793-4. PubMed ID: 20150475
    [No Abstract]   [Full Text] [Related]  

  • 29. Redox function in plasma membranes.
    Löw H; Crane FL
    Biochim Biophys Acta; 1978 Jul; 515(2):141-61. PubMed ID: 356884
    [No Abstract]   [Full Text] [Related]  

  • 30. Replacement of the proximal histidine iron ligand by a cysteine or tyrosine converts heme oxygenase to an oxidase.
    Liu Y; Moënne-Loccoz P; Hildebrand DP; Wilks A; Loehr TM; Mauk AG; Ortiz de Montellano PR
    Biochemistry; 1999 Mar; 38(12):3733-43. PubMed ID: 10090762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of electron transport inhibitors and uncouplers on the oxidation of ferrous iron and compounds interacting with ferric iron in Acidithiobacillus ferrooxidans.
    Chen Y; Suzuki I
    Can J Microbiol; 2005 Aug; 51(8):695-703. PubMed ID: 16234867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular characterization of specifically active recombinant fused enzymes consisting of CYP3A4, NADPH-cytochrome P450 oxidoreductase, and cytochrome b5.
    Inui H; Maeda A; Ohkawa H
    Biochemistry; 2007 Sep; 46(35):10213-21. PubMed ID: 17691855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct oxidation of NADPH by submitochondrial particles from Saccharomyces cerevisiae.
    Djavadi FH; Moradi M; Djavadi-Ohaniance L
    Eur J Biochem; 1980 Jun; 107(2):501-4. PubMed ID: 6995121
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of electron transport and energy conservation in the site I region of the respiratory chain.
    Onishi T
    Biochim Biophys Acta; 1973 Dec; 301(2):105-28. PubMed ID: 4149178
    [No Abstract]   [Full Text] [Related]  

  • 35. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell-surface NAD(P)H-oxidase: relationship to trans-plasma membrane NADH-oxidoreductase and a potential source of circulating NADH-oxidase.
    Berridge MV; Tan AS
    Antioxid Redox Signal; 2000; 2(2):277-88. PubMed ID: 11229532
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Triton X-100 inhibition of yeast plasma membrane associated NADH-dependent redox activities.
    Awasthi V; Pandit S; Misra PC
    J Enzyme Inhib Med Chem; 2005 Apr; 20(2):205-9. PubMed ID: 15968826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transplasmalemma electron transport from cells is part of a diferric transferrin reductase system.
    Löw H; Sun IL; Navas P; Grebing C; Crane FL; Morre DJ
    Biochem Biophys Res Commun; 1986 Sep; 139(3):1117-23. PubMed ID: 3767994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The siderophore-interacting protein YqjH acts as a ferric reductase in different iron assimilation pathways of Escherichia coli.
    Miethke M; Hou J; Marahiel MA
    Biochemistry; 2011 Dec; 50(50):10951-64. PubMed ID: 22098718
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Iron accumulation by bovine aortic endothelial cells.
    Vijayaraghavan P; Rafelson ME; Bezkorovainy A
    Clin Physiol Biochem; 1992; 9(4):138-44. PubMed ID: 1302169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.