These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 7793747)

  • 1. Computational simulation of worker exposure using a particle trajectory method.
    Flynn MR; Chen MM; Kim T; Muthedath P
    Ann Occup Hyg; 1995 Jun; 39(3):277-89. PubMed ID: 7793747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrete vortex methods for the simulation of boundary layer separation effects on worker exposure.
    Flynn MR; Miller CT
    Ann Occup Hyg; 1991 Feb; 35(1):35-50. PubMed ID: 2035952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of contaminant source location on worker exposure in the near-wake region.
    Kulmala I; Säämänen A; Enbom S
    Ann Occup Hyg; 1996 Oct; 40(5):511-23. PubMed ID: 8888634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of contaminant source momentum on a worker's breathing zone concentration in a uniform freestream.
    Kim T; Flynn MR
    Am Ind Hyg Assoc J; 1992 Dec; 53(12):757-66. PubMed ID: 1471597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of mathematical models for exposure assessment with computational fluid dynamic simulation.
    Bennett JS; Feigley CE; Khan J; Hosni MH
    Appl Occup Environ Hyg; 2000 Jan; 15(1):131-44. PubMed ID: 10712068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental investigation of the concept of a 'breathing zone' using a mannequin exposed to a point source of inertial/sedimenting particles emitted with momentum.
    Lidén G; Waher J
    Ann Occup Hyg; 2010 Jan; 54(1):100-16. PubMed ID: 19955328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling a worker's exposure from a hand-held source in a uniform freestream.
    Kim T; Flynn MR
    Am Ind Hyg Assoc J; 1991 Nov; 52(11):458-63. PubMed ID: 1746407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of facial features on particle inhalation.
    Anthony TR; Flynn MR; Eisner A
    Ann Occup Hyg; 2005 Mar; 49(2):179-93. PubMed ID: 15734830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Measurements of Near-Source Exposure Modeling Parameters.
    Keil CB
    J Occup Environ Hyg; 2015; 12(10):692-8. PubMed ID: 25897559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of wake-induced exposure using an interrupted oscillating jet.
    Bennett JS; Crouch KG; Shulman SA
    AIHA J (Fairfax, Va); 2003; 64(1):24-9. PubMed ID: 12570392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CFD model for a 3-D inhaling mannequin: verification and validation.
    Anthony TR; Flynn MR
    Ann Occup Hyg; 2006 Mar; 50(2):157-73. PubMed ID: 16157607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gaseous contaminant distribution in the breathing zone.
    Ojima J
    Ind Health; 2012; 50(3):236-8. PubMed ID: 22790482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of airborne particles within a room.
    Richmond-Bryant J; Eisner AD; Brixey LA; Wiener RW
    Indoor Air; 2006 Feb; 16(1):48-55. PubMed ID: 16420497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Installation of a flow control device in an inclined air-curtain fume hood to control wake-induced exposure.
    Chen JK
    J Occup Environ Hyg; 2016 Aug; 13(8):588-97. PubMed ID: 26950527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow dynamics and contaminant transport in industrial-type enclosing exhaust hoods.
    Karaismail E; Celik I; Guffey SE
    J Occup Environ Hyg; 2013; 10(7):384-96. PubMed ID: 23697648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contaminant dispersion in the vicinity of a worker in a uniform velocity field.
    Welling I; Andersson IM; Rosen G; Räisänen J; Mielo T; Marttinen K; Niemelä R
    Ann Occup Hyg; 2000 May; 44(3):219-25. PubMed ID: 10775670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An empirical study on the wake around a squatting worker in a confined space.
    Ojima J
    J Occup Health; 2014; 56(6):498-504. PubMed ID: 25744088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deriving realistic source boundary conditions for a CFD simulation of concentrations in workroom air.
    Feigley CE; Do TH; Khan J; Lee E; Schnaufer ND; Salzberg DC
    Ann Occup Hyg; 2011 May; 55(4):410-20. PubMed ID: 21422277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting worker exposure--the effect of ventilation velocity, free-stream turbulence and thermal condition.
    Li J; Yavuz I; Celik I; Guffey S
    J Occup Environ Hyg; 2007 Nov; 4(11):864-74. PubMed ID: 17917950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of worker's location, orientation, and activity on exposure.
    Lee E; Feigley CE; Khan J; Hussey JR
    J Occup Environ Hyg; 2007 Aug; 4(8):572-82. PubMed ID: 17562469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.