These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 7793876)
21. In vitro and in vivo antibacterial activities of BO-2727, a new carbapenem. Asahi Y; Miyazaki S; Yamaguchi K Antimicrob Agents Chemother; 1995 May; 39(5):1030-7. PubMed ID: 7625784 [TBL] [Abstract][Full Text] [Related]
22. Pseudomonas aeruginosa carbapenem resistance mechanisms in Spain: impact on the activity of imipenem, meropenem and doripenem. Riera E; Cabot G; Mulet X; García-Castillo M; del Campo R; Juan C; Cantón R; Oliver A J Antimicrob Chemother; 2011 Sep; 66(9):2022-7. PubMed ID: 21653605 [TBL] [Abstract][Full Text] [Related]
23. Role of OmpD2 and chromosomal beta-lactamase in carbapenem resistance in clinical isolates of Pseudomonas aeruginosa. Satake S; Yoneyama H; Nakae T J Antimicrob Chemother; 1991 Aug; 28(2):199-207. PubMed ID: 1778851 [TBL] [Abstract][Full Text] [Related]
24. Role of cephalosporinase in carbapenem resistance of clinical isolates of Pseudomonas aeruginosa. Zhou XY; Kitzis MD; Gutmann L Antimicrob Agents Chemother; 1993 Jun; 37(6):1387-9. PubMed ID: 8328794 [TBL] [Abstract][Full Text] [Related]
25. WCK 4234, a novel diazabicyclooctane potentiating carbapenems against Enterobacteriaceae, Pseudomonas and Acinetobacter with class A, C and D β-lactamases. Mushtaq S; Vickers A; Woodford N; Livermore DM J Antimicrob Chemother; 2017 Jun; 72(6):1688-1695. PubMed ID: 28333319 [TBL] [Abstract][Full Text] [Related]
26. In vitro and in vivo antibacterial activities of ER-35786, a new antipseudomonal carbapenem. Ohba F; Nakamura-Kamijo M; Watanabe N; Katsu K Antimicrob Agents Chemother; 1997 Feb; 41(2):298-307. PubMed ID: 9021183 [TBL] [Abstract][Full Text] [Related]
27. Occurrence of intI1-associated VIM-5 carbapenemase and co-existence of all four classes of β-lactamase in carbapenem-resistant clinical Pseudomonas aeruginosa DMC-27b. Jahan MI; Rahaman MM; Hossain MA; Sultana M J Antimicrob Chemother; 2020 Jan; 75(1):86-91. PubMed ID: 31647552 [TBL] [Abstract][Full Text] [Related]
28. Structure-activity relationships of carbapenems that determine their dependence on porin protein D2 for activity against Pseudomonas aeruginosa. Fung-Tomc JC; Huczko E; Banville J; Ménard M; Kolek B; Gradelski E; Kessler RE; Bonner DP Antimicrob Agents Chemother; 1995 Feb; 39(2):394-9. PubMed ID: 7726504 [TBL] [Abstract][Full Text] [Related]
29. Imipenem- and meropenem-resistant mutants of Enterobacter cloacae and Proteus rettgeri lack porins. Raimondi A; Traverso A; Nikaido H Antimicrob Agents Chemother; 1991 Jun; 35(6):1174-80. PubMed ID: 1656855 [TBL] [Abstract][Full Text] [Related]
30. Potentiation of beta-lactams against Pseudomonas aeruginosa strains by Ro 48-1256, a bridged monobactam inhibitor of AmpC beta-lactamases. Livermore DM; Chen HY J Antimicrob Chemother; 1997 Sep; 40(3):335-43. PubMed ID: 9338484 [TBL] [Abstract][Full Text] [Related]
31. [Antipseudomonal activity of carbapenem antibiotics]. Sunagawa M; Kanazawa K; Nouda H Jpn J Antibiot; 2000 Jul; 53(7):479-511. PubMed ID: 11019384 [TBL] [Abstract][Full Text] [Related]
32. Emergence of resistance to carbapenem antibiotics in Pseudomonas aeruginosa. Margaret BS; Drusano GL; Standiford HC J Antimicrob Chemother; 1989 Sep; 24 Suppl A():161-7. PubMed ID: 2509413 [TBL] [Abstract][Full Text] [Related]
33. Doripenem versus Pseudomonas aeruginosa in vitro: activity against characterized isolates, mutants, and transconjugants and resistance selection potential. Mushtaq S; Ge Y; Livermore DM Antimicrob Agents Chemother; 2004 Aug; 48(8):3086-92. PubMed ID: 15273124 [TBL] [Abstract][Full Text] [Related]
34. Imipenem-Relebactam and Meropenem-Vaborbactam: Two Novel Carbapenem-β-Lactamase Inhibitor Combinations. Zhanel GG; Lawrence CK; Adam H; Schweizer F; Zelenitsky S; Zhanel M; Lagacé-Wiens PRS; Walkty A; Denisuik A; Golden A; Gin AS; Hoban DJ; Lynch JP; Karlowsky JA Drugs; 2018 Jan; 78(1):65-98. PubMed ID: 29230684 [TBL] [Abstract][Full Text] [Related]
35. Biochemical characterization of novel tetrahydrofuranyl 1beta-methylcarbapenems: stability to hydrolysis by renal dehydropeptidases and bacterial beta-lactamases, binding to penicillin binding proteins, and permeability properties. Yang Y; Testa RT; Bhachech N; Rasmussen BA; Bush K Antimicrob Agents Chemother; 1999 Dec; 43(12):2904-9. PubMed ID: 10582880 [TBL] [Abstract][Full Text] [Related]
36. Carbapenem resistance mechanisms in Pseudomonas aeruginosa: alterations of porin OprD and efflux proteins do not fully explain resistance patterns observed in clinical isolates. El Amin N; Giske CG; Jalal S; Keijser B; Kronvall G; Wretlind B APMIS; 2005 Mar; 113(3):187-96. PubMed ID: 15799762 [TBL] [Abstract][Full Text] [Related]
37. Comparative in-vitro activity of biapenem against enterobacteria with beta-lactamase-mediated antibiotic resistance. Chen HY; Livermore DM J Antimicrob Chemother; 1994 Mar; 33(3):453-64. PubMed ID: 8040111 [TBL] [Abstract][Full Text] [Related]
38. A highly carbapenem-resistant Pseudomonas aeruginosa isolate with a novel blaVIM-4/blaP1b integron overexpresses two efflux pumps and lacks OprD. Maniati M; Ikonomidis A; Mantzana P; Daponte A; Maniatis AN; Pournaras S J Antimicrob Chemother; 2007 Jul; 60(1):132-5. PubMed ID: 17483142 [TBL] [Abstract][Full Text] [Related]
39. Characterization of a Carbapenem-Hydrolyzing Enzyme, PoxB, in Pseudomonas aeruginosa PAO1. Zincke D; Balasubramanian D; Silver LL; Mathee K Antimicrob Agents Chemother; 2016 Feb; 60(2):936-45. PubMed ID: 26621621 [TBL] [Abstract][Full Text] [Related]
40. [Carbapenem resistance in Pseudomonas aeruginosa isolates: an example of interaction between different mechanisms]. Santella G; Pollini S; Docquier JD; Almuzara M; Gutkind G; Rossolini GM; Radice M Rev Panam Salud Publica; 2011 Dec; 30(6):545-8. PubMed ID: 22358400 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]