BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7793959)

  • 1. Differentiation of Aspergillus parasiticus from Aspergillus sojae by random amplification of polymorphic DNA.
    Yuan GF; Liu CS; Chen CC
    Appl Environ Microbiol; 1995 Jun; 61(6):2384-7. PubMed ID: 7793959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic differentiation of the Aspergillus section Flavi complex using AFLP fingerprints.
    Montiel D; Dickinson MJ; Lee HA; Dyer PS; Jeenes DJ; Roberts IN; James S; Fuller LJ; Matsuchima K; Archer DB
    Mycol Res; 2003 Dec; 107(Pt 12):1427-34. PubMed ID: 15000243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular strategy for identification in Aspergillus section Flavi.
    Godet M; Munaut F
    FEMS Microbiol Lett; 2010 Mar; 304(2):157-68. PubMed ID: 20377644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aspergillus oryzae with and without a homolog of aflatoxin biosynthetic gene ver-1.
    Kusumoto KI; Yabe K; Nogata Y; Ohta H
    Appl Microbiol Biotechnol; 1998 Jul; 50(1):98-104. PubMed ID: 9720206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and toxigenic potential of the industrially important fungi, Aspergillus oryzae and Aspergillus sojae.
    Jørgensen TR
    J Food Prot; 2007 Dec; 70(12):2916-34. PubMed ID: 18095455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First report of an atypical new Aspergillus parasiticus isolates with nucleotide insertion in aflR gene resembling to A. sojae.
    Hua SST; Parfitt DE; Sarreal SBL; Lee BG; Wood DF
    Mycotoxin Res; 2018 May; 34(2):151-157. PubMed ID: 29464607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymerase chain reaction-mediated characterization of molds belonging to the Aspergillus flavus group and detection of Aspergillus parasiticus in peanut kernels by a multiplex polymerase chain reaction.
    Chen RS; Tsay JG; Huang YF; Chiou RY
    J Food Prot; 2002 May; 65(5):840-4. PubMed ID: 12030297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Polyphasic Approach to Compare the Genomic Profiles of Aflatoxigenic and Non-Aflatoxigenic Isolates of
    Abbas A; Hussien T; Yli-Mattila T
    Toxins (Basel); 2020 Jan; 12(1):. PubMed ID: 31963352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence variability in homologs of the aflatoxin pathway gene aflR distinguishes species in Aspergillus section Flavi.
    Chang PK; Bhatnagar D; Cleveland TE; Bennett JW
    Appl Environ Microbiol; 1995 Jan; 61(1):40-3. PubMed ID: 7887625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre-termination in aflR of Aspergillus sojae inhibits aflatoxin biosynthesis.
    Matsushima K; Chang PK; Yu J; Abe K; Bhatnagar D; Cleveland TE
    Appl Microbiol Biotechnol; 2001 May; 55(5):585-9. PubMed ID: 11414325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absence of aflatoxin biosynthesis in koji mold (Aspergillus sojae).
    Matsushima K; Yashiro K; Hanya Y; Abe K; Yabe K; Hamasaki T
    Appl Microbiol Biotechnol; 2001 Jun; 55(6):771-6. PubMed ID: 11525627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Taxonomic comparison of three different groups of aflatoxin producers and a new efficient producer of aflatoxin B1, sterigmatocystin and 3-O-methylsterigmatocystin, Aspergillus rambellii sp. nov.
    Frisvad JC; Skouboe P; Samson RA
    Syst Appl Microbiol; 2005 Jul; 28(5):442-53. PubMed ID: 16094871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the aflR gene sequences of strains in Aspergillus section Flavi.
    Lee CZ; Liou GY; Yuan GF
    Microbiology (Reading); 2006 Jan; 152(Pt 1):161-170. PubMed ID: 16385126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-strand conformation polymorphism analysis of PCR-amplified ribosomal DNA internal transcribed spacers to differentiate species of Aspergillus section Flavi.
    Kumeda Y; Asao T
    Appl Environ Microbiol; 1996 Aug; 62(8):2947-52. PubMed ID: 8702288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of species in Aspergillus section Flavi based on sequencing of the mitochondrial cytochrome b gene.
    Wang L; Yokoyama K; Takahasi H; Kase N; Hanya Y; Yashiro K; Miyaji M; Nishimura K
    Int J Food Microbiol; 2001 Dec; 71(1):75-86. PubMed ID: 11764895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the aflatoxin biosynthetic genes for identification of the Aspergillus section Flavi.
    Nakamura H; Narihiro T; Tsuruoka N; Mochimaru H; Matsumoto R; Tanabe Y; Hagiya K; Ikeba K; Maruyama A; Hanada S
    Microbes Environ; 2011; 26(4):367-9. PubMed ID: 21791886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and characterization of avfA and omtB genes involved in aflatoxin biosynthesis in three Aspergillus species.
    Yu J; Woloshuk CP; Bhatnagar D; Cleveland TE
    Gene; 2000 May; 248(1-2):157-67. PubMed ID: 10806361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are Current
    Chang PK; Hua SST
    Mycobiology; 2023; 51(3):139-147. PubMed ID: 37359951
    [No Abstract]   [Full Text] [Related]  

  • 19. Lack of interaction between AFLR and AFLJ contributes to nonaflatoxigenicity of Aspergillus sojae.
    Chang PK
    J Biotechnol; 2004 Feb; 107(3):245-53. PubMed ID: 14736460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aspergillus parasiticus communities associated with sugarcane in the Rio Grande Valley of Texas: implications of global transport and host association within Aspergillus section Flavi.
    Garber NP; Cotty PJ
    Phytopathology; 2014 May; 104(5):462-71. PubMed ID: 24224872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.