These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 7794244)

  • 1. Luminescence of aequorin is triggered by the binding of two calcium ions.
    Shimomura O
    Biochem Biophys Res Commun; 1995 Jun; 211(2):359-63. PubMed ID: 7794244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Titration of recombinant aequorin with calcium chloride.
    Shimomura O; Inouye S
    Biochem Biophys Res Commun; 1996 Apr; 221(1):77-81. PubMed ID: 8660347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imidazole-assisted catalysis of luminescence reaction in blue fluorescent protein from the photoprotein aequorin.
    Inouye S; Sasaki S
    Biochem Biophys Res Commun; 2007 Mar; 354(3):650-5. PubMed ID: 17254548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioluminescence in the sea: photoprotein systems.
    Shimomura O
    Symp Soc Exp Biol; 1985; 39():351-72. PubMed ID: 2871634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR analysis of the Mg2+-binding properties of aequorin, a Ca2+-binding photoprotein.
    Ohashi W; Inouye S; Yamazaki T; Hirota H
    J Biochem; 2005 Nov; 138(5):613-20. PubMed ID: 16272573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of intracellular calcium elevations in Xenopus laevis oocytes: aequorin luminescence versus electrophysiology.
    Grygorczyk R; Feighner SD; Adam M; Liu KK; LeCouter JE; Dashkevicz MP; Hreniuk DL; Rydberg EH; Arena JP
    J Neurosci Methods; 1996 Jul; 67(1):19-25. PubMed ID: 8844521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blue fluorescent protein from the calcium-sensitive photoprotein aequorin: catalytic properties for the oxidation of coelenterazine as an oxygenase.
    Inouye S; Sasaki S
    FEBS Lett; 2006 Apr; 580(8):1977-82. PubMed ID: 16545379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of intracellular calcium using bioluminescent aequorin expressed in human cells.
    Sheu YA; Kricka LJ; Pritchett DB
    Anal Biochem; 1993 Mar; 209(2):343-7. PubMed ID: 8470808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and initial characterization of crystals of the photoprotein aequorin from Aequorea victoria.
    Hannick LI; Prasher DC; Schultz LW; Deschamps JR; Ward KB
    Proteins; 1993 Jan; 15(1):103-7. PubMed ID: 8451237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of the photoprotein aequorin at 2.3 A resolution.
    Head JF; Inouye S; Teranishi K; Shimomura O
    Nature; 2000 May; 405(6784):372-6. PubMed ID: 10830969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-emitting properties of recombinant semi-synthetic aequorins and recombinant fluorescein-conjugated aequorin for measuring cellular calcium.
    Shimomura O; Musicki B; Kishi Y; Inouye S
    Cell Calcium; 1993 May; 14(5):373-8. PubMed ID: 8519061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of halothane, enflurane, and isoflurane on measurements of Ca(2+) by calcium electrode and aequorin luminescence.
    Housmans PR; Wanek LA
    Anal Biochem; 2000 Aug; 284(1):60-4. PubMed ID: 10933856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dynamic pool of calcium in catecholamine storage vesicles. Exploration in living cells by a novel vesicle-targeted chromogranin A-aequorin chimeric photoprotein.
    Mahapatra NR; Mahata M; Hazra PP; McDonough PM; O'Connor DT; Mahata SK
    J Biol Chem; 2004 Dec; 279(49):51107-21. PubMed ID: 15358782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioluminescence of the Ca2+-binding photoprotein aequorin after cysteine modification.
    Kurose K; Inouye S; Sakaki Y; Tsuji FI
    Proc Natl Acad Sci U S A; 1989 Jan; 86(1):80-4. PubMed ID: 2643108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interchange of aequorin and obelin bioluminescence color is determined by substitution of one active site residue of each photoprotein.
    Stepanyuk GA; Golz S; Markova SV; Frank LA; Lee J; Vysotski ES
    FEBS Lett; 2005 Feb; 579(5):1008-14. PubMed ID: 15710383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a liposomal bioluminescent label in the development of a flow injection immunoanalytical system.
    Ho JA; Huang MR
    Anal Chem; 2005 Jun; 77(11):3431-6. PubMed ID: 15924372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of new semisynthetic aequorins with long half-decay time of luminescence to G-protein-coupled receptor assay.
    Inouye S; Iimori R; Sahara Y; Hisada S; Hosoya T
    Anal Biochem; 2010 Dec; 407(2):247-52. PubMed ID: 20800051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral components of bioluminescence of aequorin and obelin.
    Belogurova NV; Kudryasheva NS; Alieva RR; Sizykh AG
    J Photochem Photobiol B; 2008 Aug; 92(2):117-22. PubMed ID: 18602272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of antagonist activity of spantide family at human neurokinin receptors measured by aequorin luminescence-based functional calcium assay.
    Janecka A; Poels J; Fichna J; Studzian K; Vanden Broeck J
    Regul Pept; 2005 Nov; 131(1-3):23-8. PubMed ID: 15990182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering the CA(2+)-activated photoprotein aequorin with reduced affinity for calcium.
    Kendall JM; Sala-Newby G; Ghalaut V; Dormer RL; Campbell AK
    Biochem Biophys Res Commun; 1992 Sep; 187(2):1091-7. PubMed ID: 1530606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.