These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 7794524)
1. In vitro amyloid fibril formation from alpha 1-antitrypsin. Janciauskiene S; Carlemalm E; Eriksson S Biol Chem Hoppe Seyler; 1995 Feb; 376(2):103-9. PubMed ID: 7794524 [TBL] [Abstract][Full Text] [Related]
2. In vitro fibril formation from alpha 1-antitrypsin-derived C-terminal peptides. Janciauskiene S; Carlemalm E; Eriksson S Biol Chem Hoppe Seyler; 1995 Jul; 376(7):415-23. PubMed ID: 7576238 [TBL] [Abstract][Full Text] [Related]
3. The in vitro effect of lithocholic acid on the polymerization properties of PiZ alpha-1-antitrypsin. Gerbod MC; Janciauskiene S; Jeppsson JO; Eriksson S Arch Biochem Biophys; 1998 Mar; 351(2):167-74. PubMed ID: 9514645 [TBL] [Abstract][Full Text] [Related]
4. Reversible amyloid formation by the p53 tetramerization domain and a cancer-associated mutant. Lee AS; Galea C; DiGiammarino EL; Jun B; Murti G; Ribeiro RC; Zambetti G; Schultz CP; Kriwacki RW J Mol Biol; 2003 Mar; 327(3):699-709. PubMed ID: 12634062 [TBL] [Abstract][Full Text] [Related]
5. The putative role of alpha-1-antitrypsin in the disaggregation of amyloid lambda fibrils. Eriksson S; Janciauskiene S; Merlini G J Intern Med; 1995 Feb; 237(2):143-9. PubMed ID: 7852916 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence-detected polymerization kinetics of human alpha 1-antitrypsin. Koloczek H; Guz A; Kaszycki P J Protein Chem; 1996 Jul; 15(5):447-54. PubMed ID: 8895089 [TBL] [Abstract][Full Text] [Related]
7. Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Chiti F; Webster P; Taddei N; Clark A; Stefani M; Ramponi G; Dobson CM Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3590-4. PubMed ID: 10097081 [TBL] [Abstract][Full Text] [Related]
8. Effects of glycosylation on the folding and stability of human, recombinant and cleaved alpha 1-antitrypsin. Powell LM; Pain RH J Mol Biol; 1992 Mar; 224(1):241-52. PubMed ID: 1548702 [TBL] [Abstract][Full Text] [Related]
9. Partially unfolded states of beta(2)-microglobulin and amyloid formation in vitro. McParland VJ; Kad NM; Kalverda AP; Brown A; Kirwin-Jones P; Hunter MG; Sunde M; Radford SE Biochemistry; 2000 Aug; 39(30):8735-46. PubMed ID: 10913285 [TBL] [Abstract][Full Text] [Related]
10. Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid. Conway KA; Harper JD; Lansbury PT Biochemistry; 2000 Mar; 39(10):2552-63. PubMed ID: 10704204 [TBL] [Abstract][Full Text] [Related]
11. Guanidine hydrochloride can induce amyloid fibril formation from hen egg-white lysozyme. Vernaglia BA; Huang J; Clark ED Biomacromolecules; 2004; 5(4):1362-70. PubMed ID: 15244452 [TBL] [Abstract][Full Text] [Related]
13. The most pathogenic transthyretin variant, L55P, forms amyloid fibrils under acidic conditions and protofilaments under physiological conditions. Lashuel HA; Wurth C; Woo L; Kelly JW Biochemistry; 1999 Oct; 38(41):13560-73. PubMed ID: 10521263 [TBL] [Abstract][Full Text] [Related]
14. Searching for conditions to form stable protein oligomers with amyloid-like characteristics: The unexplored basic pH. Ahmad B; Winkelmann J; Tiribilli B; Chiti F Biochim Biophys Acta; 2010 Jan; 1804(1):223-34. PubMed ID: 19836473 [TBL] [Abstract][Full Text] [Related]
15. The C-terminal peptide of alpha-1-antitrypsin increases low density lipoprotein binding in HepG2 cells. Janciauskiene S; Lindgren S; Wright HT Eur J Biochem; 1998 Jun; 254(3):460-7. PubMed ID: 9688255 [TBL] [Abstract][Full Text] [Related]
16. Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in vitro. Kayed R; Bernhagen J; Greenfield N; Sweimeh K; Brunner H; Voelter W; Kapurniotu A J Mol Biol; 1999 Apr; 287(4):781-96. PubMed ID: 10191146 [TBL] [Abstract][Full Text] [Related]
17. The N-terminal region of non-A beta component of Alzheimer's disease amyloid is responsible for its tendency to assume beta-sheet and aggregate to form fibrils. El-Agnaf OM; Bodles AM; Guthrie DJ; Harriott P; Irvine GB Eur J Biochem; 1998 Nov; 258(1):157-63. PubMed ID: 9851705 [TBL] [Abstract][Full Text] [Related]
18. Impact of the PEG length and PEGylation site on the structural, thermodynamic, thermal, and proteolytic stability of mono-PEGylated alpha-1 antitrypsin. Liu X; Kouassi KGW; Vanbever R; Dumoulin M Protein Sci; 2022 Sep; 31(9):e4392. PubMed ID: 36040264 [TBL] [Abstract][Full Text] [Related]
19. Stability of recombinant human alpha-1-antitrypsin produced in rice in infant formula. Chowanadisai W; Huang J; Huang N; Lönnerdal B J Nutr Biochem; 2003 Jul; 14(7):386-93. PubMed ID: 12915219 [TBL] [Abstract][Full Text] [Related]
20. Acid Denaturation of alpha1-antitrypsin: characterization of a novel mechanism of serpin polymerization. Devlin GL; Chow MK; Howlett GJ; Bottomley SP J Mol Biol; 2002 Dec; 324(4):859-70. PubMed ID: 12460583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]