BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 7794790)

  • 1. Nuclear factor I interferes with transformation induced by nuclear oncogenes.
    Schuur ER; Kruse U; Iacovoni JS; Vogt PK
    Cell Growth Differ; 1995 Mar; 6(3):219-27. PubMed ID: 7794790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of AP-1 function in cellular transformation pathways.
    Suzuki T; Murakami M; Onai N; Fukuda E; Hashimoto Y; Sonobe MH; Kameda T; Ichinose M; Miki K; Iba H
    J Virol; 1994 Jun; 68(6):3527-35. PubMed ID: 8189491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and functional analysis of spliced isoforms of human nuclear factor I-X: interference with transcriptional activation by NFI/CTF in a cell-type specific manner.
    Apt D; Liu Y; Bernard HU
    Nucleic Acids Res; 1994 Sep; 22(19):3825-33. PubMed ID: 7937100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed mutation of the basic domain of v-Jun alters DNA binding specificity and abolishes its oncogenic activity in chicken embryo fibroblasts.
    Basso J; Briggs J; Findlay C; Bos T
    Oncogene; 2000 Oct; 19(42):4876-85. PubMed ID: 11039905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple signaling pathways control the activation of the CEF-4/9E3 cytokine gene by pp60v-src.
    Bojović B; Rodrigues N; Dehbi M; Bédard PA
    J Biol Chem; 1996 Sep; 271(37):22528-37. PubMed ID: 8798420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression patterns of the four nuclear factor I genes during mouse embryogenesis indicate a potential role in development.
    Chaudhry AZ; Lyons GE; Gronostajski RM
    Dev Dyn; 1997 Mar; 208(3):313-25. PubMed ID: 9056636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The oncogenicity of jun.
    Vogt PK; Bos TJ; Mitsunobu F; Nishimura T; Monteclaro FS; Su HY
    Princess Takamatsu Symp; 1989; 20():127-34. PubMed ID: 2562177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heparin-binding epidermal growth factor-like growth factor, a v-Jun target gene, induces oncogenic transformation.
    Fu Sl; Bottoli I; Goller M; Vogt PK
    Proc Natl Acad Sci U S A; 1999 May; 96(10):5716-21. PubMed ID: 10318950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TOJ3, a target of the v-Jun transcription factor, encodes a protein with transforming activity related to human microspherule protein 1 (MCRS1).
    Bader AG; Schneider ML; Bister K; Hartl M
    Oncogene; 2001 Nov; 20(51):7524-35. PubMed ID: 11709724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Y box-binding protein 1 induces resistance to oncogenic transformation by the phosphatidylinositol 3-kinase pathway.
    Bader AG; Felts KA; Jiang N; Chang HW; Vogt PK
    Proc Natl Acad Sci U S A; 2003 Oct; 100(21):12384-9. PubMed ID: 14530393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hormone responsive region of mouse mammary tumor virus positions a nucleosome and precludes access of nuclear factor I to the promoter.
    Candau R; Chávez S; Beato M
    J Steroid Biochem Mol Biol; 1996 Jan; 57(1-2):19-31. PubMed ID: 8645614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and transcriptional regulation of BKJ, a novel AP-1 target gene activated during jun- or fos-induced fibroblast transformation.
    Hartl M; Bister K
    Oncogene; 1998 Dec; 17(22):2901-13. PubMed ID: 9879996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional activation of the human papillomavirus-16 P97 promoter by an 88-nucleotide enhancer containing distinct cell-dependent and AP-1-responsive modules.
    Cripe TP; Alderborn A; Anderson RD; Parkkinen S; Bergman P; Haugen TH; Pettersson U; Turek LP
    New Biol; 1990 May; 2(5):450-63. PubMed ID: 1963084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NFI-Ski interactions mediate transforming growth factor beta modulation of human papillomavirus type 16 early gene expression.
    Baldwin A; Pirisi L; Creek KE
    J Virol; 2004 Apr; 78(8):3953-64. PubMed ID: 15047811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The genes for transcription factor nuclear factor I give rise to corresponding splice variants between vertebrate species.
    Kruse U; Sippel AE
    J Mol Biol; 1994 May; 238(5):860-5. PubMed ID: 8182757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the DNA-binding and transcriptional activities of Xenopus laevis NFI-X by a novel C-terminal domain.
    Roulet E; Armentero MT; Krey G; Corthésy B; Dreyer C; Mermod N; Wahli W
    Mol Cell Biol; 1995 Oct; 15(10):5552-62. PubMed ID: 7565707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mammary cell-specific enhancer in mouse mammary tumor virus DNA is composed of multiple regulatory elements including binding sites for CTF/NFI and a novel transcription factor, mammary cell-activating factor.
    Mink S; Härtig E; Jennewein P; Doppler W; Cato AC
    Mol Cell Biol; 1992 Nov; 12(11):4906-18. PubMed ID: 1328867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. JAC, a direct target of oncogenic transcription factor Jun, is involved in cell transformation and tumorigenesis.
    Hartl M; Reiter F; Bader AG; Castellazzi M; Bister K
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):13601-6. PubMed ID: 11698665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chicken NFI/TGGCA proteins are encoded by at least three independent genes: NFI-A, NFI-B and NFI-C with homologues in mammalian genomes.
    Rupp RA; Kruse U; Multhaup G; Göbel U; Beyreuther K; Sippel AE
    Nucleic Acids Res; 1990 May; 18(9):2607-16. PubMed ID: 2339052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NFI in the development of the olfactory neuroepithelium and the regulation of olfactory marker protein gene expression.
    Behrens M; Venkatraman G; Gronostajski RM; Reed RR; Margolis FL
    Eur J Neurosci; 2000 Apr; 12(4):1372-84. PubMed ID: 10762365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.