BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 7794936)

  • 1. Interpreting the effects of specific protein modification on antiport coupling mechanisms: the case of the aspartate/glutamate exchanger.
    Krupka RM
    Biochim Biophys Acta; 1995 May; 1236(1):1-9. PubMed ID: 7794936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction mechanism of the reconstituted aspartate/glutamate carrier from bovine heart mitochondria.
    Dierks T; Riemer E; Krämer R
    Biochim Biophys Acta; 1988 Aug; 943(2):231-44. PubMed ID: 2900025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore-like and carrier-like properties of the mitochondrial aspartate/glutamate carrier after modification by SH-reagents: evidence for a performed channel as a structural requirement of carrier-mediated transport.
    Dierks T; Salentin A; Krämer R
    Biochim Biophys Acta; 1990 Oct; 1028(3):281-8. PubMed ID: 1699601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mitochondrial aspartate/glutamate and ADP/ATP carrier switch from obligate counterexchange to unidirectional transport after modification by SH-reagents.
    Dierks T; Salentin A; Heberger C; Krämer R
    Biochim Biophys Acta; 1990 Oct; 1028(3):268-80. PubMed ID: 1977471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the active site of the reconstituted aspartate/glutamate carrier from mitochondria. Structure/function relationship involving one lysine and two cysteine residues.
    Stappen R; Dierks T; Bröer A; Krämer R
    Eur J Biochem; 1992 Nov; 210(1):269-77. PubMed ID: 1359967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and energetic characterization of solute flux through the reconstituted aspartate/glutamate carrier from beef heart mitochondria after modification with mercurials.
    Herick K; Krämer R
    Biochim Biophys Acta; 1995 Aug; 1238(1):63-71. PubMed ID: 7654752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic study of the aspartate/glutamate carrier in intact rat heart mitochondria and comparison with a reconstituted system.
    Sluse FE; Evens A; Dierks T; Duyckaerts C; Sluse-Goffart CM; Krämer R
    Biochim Biophys Acta; 1991 Jul; 1058(3):329-38. PubMed ID: 2065061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Simulation of the uncoupling activity of fatty acids with the participation of ADP/ATP and aspartate/glutamate antiporters in liver mitochondria].
    Samartsev VN; Kozhina OV; Marchik EI
    Biofizika; 2012; 57(2):267-73. PubMed ID: 22594284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of proline/glutamate antiport in rat kidney mitochondria. Energy dependence and glutamate-carrier involvement.
    Atlante A; Passarella S; Pierro P; Di Martino C; Quagliariello E
    Eur J Biochem; 1996 Oct; 241(1):171-7. PubMed ID: 8898903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophan 224 of the rat mitochondrial carnitine/acylcarnitine carrier is crucial for the antiport mechanism.
    Giangregorio N; Tonazzi A; Console L; Pistillo M; Scalera V; Indiveri C
    Biochim Biophys Acta Bioenerg; 2019 Sep; 1860(9):708-716. PubMed ID: 31340138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial carrier proteins can reversibly change their transport mode: the cases of the aspartate/glutamate and the phosphate carrier.
    Krämer R
    Exp Physiol; 1998 Mar; 83(2):259-65. PubMed ID: 9568487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate specificity of the aspartate:alanine antiporter (AspT) of Tetragenococcus halophilus in reconstituted liposomes.
    Sasahara A; Nanatani K; Enomoto M; Kuwahara S; Abe K
    J Biol Chem; 2011 Aug; 286(33):29044-29052. PubMed ID: 21719707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of aspartate/glutamate antiporter in uncoupling effect of fatty acids in heart mitochondria.
    Samartsev VN; Zeldi IP; Mokhova EN
    Biochemistry (Mosc); 1998 May; 63(5):573-8. PubMed ID: 9632895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of substrate binding forces in exchange-only transport systems: I. Transition-state theory.
    Krupka RM
    J Membr Biol; 1989 Jul; 109(2):151-8. PubMed ID: 2769738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpreting the effects of site-directed mutagenesis on active transport systems.
    Krupka RM
    Biochim Biophys Acta; 1994 Jul; 1193(1):165-78. PubMed ID: 8038187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the active site of the reconstituted aspartate/glutamate carrier from bovine heart mitochondria: carbodiimide-catalyzed acylation of a functional lysine residue.
    Dierks T; Stappen R; Salentin A; Krämer R
    Biochim Biophys Acta; 1992 Jan; 1103(1):13-24. PubMed ID: 1346091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AGC1/2, the mitochondrial aspartate-glutamate carriers.
    Amoedo ND; Punzi G; Obre E; Lacombe D; De Grassi A; Pierri CL; Rossignol R
    Biochim Biophys Acta; 2016 Oct; 1863(10):2394-412. PubMed ID: 27132995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The purified and reconstituted ornithine/citrulline carrier from rat liver mitochondria: electrical nature and coupling of the exchange reaction with H+ translocation.
    Indiveri C; Tonazzi A; Stipani I; Palmieri F
    Biochem J; 1997 Oct; 327 ( Pt 2)(Pt 2):349-55. PubMed ID: 9359400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a binding protein-dependent glutamate transport system of Rhodobacter sphaeroides.
    Jacobs MH; Driessen AJ; Konings WN
    J Bacteriol; 1995 Apr; 177(7):1812-6. PubMed ID: 7896705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling mechanisms in ATP-driven pumps.
    Krupka RM
    Biochim Biophys Acta; 1993 Nov; 1183(1):114-22. PubMed ID: 8399372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.