These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 7794936)

  • 21. Identification and purification of the aspartate/glutamate carrier from bovine heart mitochondria.
    Bisaccia F; De Palma A; Palmieri F
    Biochim Biophys Acta; 1992 May; 1106(2):291-6. PubMed ID: 1317723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Substrate specificity of the mammary tissue anionic amino acid carrier operating in the cotransport and exchange modes.
    Millar ID; Calvert DT; Lomax MA; Shennan DB
    Biochim Biophys Acta; 1997 May; 1326(1):92-102. PubMed ID: 9188804
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aspartate-444 is essential for productive substrate interactions in a neuronal glutamate transporter.
    Teichman S; Kanner BI
    J Gen Physiol; 2007 Jun; 129(6):527-39. PubMed ID: 17535962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sulfhydryl modification of cysteine mutants of a neuronal glutamate transporter reveals an inverse relationship between sodium dependent conformational changes and the glutamate-gated anion conductance.
    Shachnai L; Shimamoto K; Kanner BI
    Neuropharmacology; 2005 Nov; 49(6):862-71. PubMed ID: 16137722
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermodynamics of symport and antiport catalyzed by cloned or native transporters.
    Gerencser GA; Stevens BR
    J Exp Biol; 1994 Nov; 196():59-75. PubMed ID: 7823045
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of the ADP/ATP and aspartate/glutamate antiporters in the uncoupling effect of fatty acids, lauryl sulfate, and 2, 4-dinitrophenol in liver mitochondria.
    Samartsev VN; Markova OV; Zeldi IP; Smirnov AV
    Biochemistry (Mosc); 1999 Aug; 64(8):901-11. PubMed ID: 10498806
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Asymmetric orientation of the reconstituted aspartate/glutamate carrier from mitochondria.
    Dierks T; Krämer R
    Biochim Biophys Acta; 1988 Jan; 937(1):112-26. PubMed ID: 3334841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Channelling free energy into work in biological processes.
    Krupka RM
    Exp Physiol; 1998 Mar; 83(2):243-51. PubMed ID: 9568485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coupling mechanisms in active transport.
    Krupka RM
    Biochim Biophys Acta; 1993 Nov; 1183(1):105-13. PubMed ID: 8399371
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glutamate excitotoxicity and Ca2+-regulation of respiration: Role of the Ca2+ activated mitochondrial transporters (CaMCs).
    Rueda CB; Llorente-Folch I; Traba J; Amigo I; Gonzalez-Sanchez P; Contreras L; Juaristi I; Martinez-Valero P; Pardo B; Del Arco A; Satrustegui J
    Biochim Biophys Acta; 2016 Aug; 1857(8):1158-1166. PubMed ID: 27060251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of aspartate and glutamate on the oxoglutarate carrier investigated in rat heart mitochondria and inverted submitochondrial vesicles.
    Hautecler JJ; Sluse-Goffart CM; Evens A; Duyckaerts C; Sluse FE
    Biochim Biophys Acta; 1994 Apr; 1185(2):153-9. PubMed ID: 7909447
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The carboxyl side chain of glutamate 681 interacts with a chloride binding modifier site that allosterically modulates the dimeric conformational state of band 3 (AE1). Implications for the mechanism of anion/proton cotransport.
    Salhany JM; Sloan RL; Cordes KS
    Biochemistry; 2003 Feb; 42(6):1589-602. PubMed ID: 12578372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antiporters of the mitochondrial carrier family.
    Monné M; Palmieri F
    Curr Top Membr; 2014; 73():289-320. PubMed ID: 24745987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transport cycle intermediate in small multidrug resistance protein is revealed by substrate fluorescence.
    Basting D; Lorch M; Lehner I; Glaubitz C
    FASEB J; 2008 Feb; 22(2):365-73. PubMed ID: 17873100
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical modification of the mitochondrial ornithine/citrulline carrier by SH reagents: effects on the transport activity and transition from carrier to pore-like function.
    Tonazzi A; Indiveri C
    Biochim Biophys Acta; 2003 Apr; 1611(1-2):123-30. PubMed ID: 12659953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New free-exchange model of EmrE transport.
    Robinson AE; Thomas NE; Morrison EA; Balthazor BM; Henzler-Wildman KA
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):E10083-E10091. PubMed ID: 29114048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The position of an arginine residue influences substrate affinity and K+ coupling in the human glutamate transporter, EAAT1.
    Ryan RM; Kortt NC; Sirivanta T; Vandenberg RJ
    J Neurochem; 2010 Jul; 114(2):565-75. PubMed ID: 20477940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The regulation of OXPHOS by extramitochondrial calcium.
    Gellerich FN; Gizatullina Z; Trumbeckaite S; Nguyen HP; Pallas T; Arandarcikaite O; Vielhaber S; Seppet E; Striggow F
    Biochim Biophys Acta; 2010; 1797(6-7):1018-27. PubMed ID: 20144582
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic mechanism of antiports catalyzed by reconstituted ornithine/citrulline carrier from rat liver mitochondria.
    Indiveri C; Tonazzi A; De Palma A; Palmieri F
    Biochim Biophys Acta; 2001 Jan; 1503(3):303-13. PubMed ID: 11115642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binding of C5-dicarboxylic substrate to aspartate aminotransferase: implications for the conformational change at the transaldimination step.
    Islam MM; Goto M; Miyahara I; Ikushiro H; Hirotsu K; Hayashi H
    Biochemistry; 2005 Jun; 44(23):8218-29. PubMed ID: 15938611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.